These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6108179)

  • 1. Response to heavy metals in organisms-I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis.
    Albergoni V; Piccinni E; Coppellotti O
    Comp Biochem Physiol C Comp Pharmacol; 1980; 67C(2):121-7. PubMed ID: 6108179
    [No Abstract]   [Full Text] [Related]  

  • 2. Heavy metal tolerance in a cadmium-resistant population of Euglena gracilis.
    Bariaud A; Mestre JC
    Bull Environ Contam Toxicol; 1984 May; 32(5):597-601. PubMed ID: 6428489
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis.
    Rodríguez-Zavala JS; García-García JD; Ortiz-Cruz MA; Moreno-Sánchez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Aug; 42(10):1365-78. PubMed ID: 17680475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium.
    Gingrich DJ; Weber DN; Shaw CF; Garvey JS; Petering DH
    Environ Health Perspect; 1986 Mar; 65():77-85. PubMed ID: 3011392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-surface changes in cadmium-resistant Euglena: studies using lectin-binding techniques and flow cytometry.
    Bonaly J; Brochiero E
    Bull Environ Contam Toxicol; 1994 Jan; 52(1):54-60. PubMed ID: 8130417
    [No Abstract]   [Full Text] [Related]  

  • 6. Cadmium resistance of achlorophyllous Euglena gracilis cells: constitutive overexpression of two heat-shock proteins.
    Barque JP; Chacun H; Marouby S; Bonaly J
    Biochem Biophys Res Commun; 1994 Aug; 203(1):540-4. PubMed ID: 8074701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species.
    Kennedy V; Kaszecki E; Donaldson ME; Saville BJ
    Sci Rep; 2024 May; 14(1):11734. PubMed ID: 38777815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells.
    Einicker-Lamas M; Mezian GA; Fernandes TB; Silva FL; Guerra F; Miranda K; Attias M; Oliveira MM
    Environ Pollut; 2002; 120(3):779-86. PubMed ID: 12442801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics.
    Nguyen NH; Nguyen QT; Dang DH; Emery RJN
    Environ Pollut; 2023 Mar; 320():121094. PubMed ID: 36682616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium-induced synthesis of HSP70 and a role of glutathione in Euglena gracilis.
    Watanabe M; Suzuki T
    Redox Rep; 2004; 9(6):349-53. PubMed ID: 15720831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein synthesis in cadmium- and pentachlorophenol-tolerant Euglena gracilis.
    Barque JP; Abahamid A; Bourezgui Y; Chacun H; Bonaly J
    Environ Res; 1995 Jul; 70(1):70-4. PubMed ID: 8603662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis.
    Avilés C; Loza-Tavera H; Terry N; Moreno-Sánchez R
    Arch Microbiol; 2003 Jul; 180(1):1-10. PubMed ID: 12739103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd2+ transport and storage in the chloroplast of Euglena gracilis.
    Mendoza-Cózatl DG; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):88-97. PubMed ID: 15620368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca.
    Shuhaimi-Othman M; Pascoe D
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):29-35. PubMed ID: 16647753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis.
    Stallwitz E; Hader DP
    Eur J Protistol; 1994 Feb; 30(1):18-24. PubMed ID: 11541066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis.
    Watanabe M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Apr; 131(4):491-500. PubMed ID: 11976064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cadmium on Euglena gracilis membrane lipids.
    Einicker-Lamas M; Soares MJ; Soares MS; Oliveira MM
    Braz J Med Biol Res; 1996 Aug; 29(8):941-8. PubMed ID: 9181074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p38 MAPK as a signal transduction component of heavy metals stress in Euglena gracilis.
    Rios-Barrera D; Vega-Segura A; Thibert V; Rodríguez-Zavala JS; Torres-Marquez ME
    Arch Microbiol; 2009 Jan; 191(1):47-54. PubMed ID: 18762912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis.
    Deloménie C; Foti E; Floch E; Diderot V; Porquet D; Dupuy C; Bonaly J
    Biochem Biophys Res Commun; 2007 Jun; 358(2):455-61. PubMed ID: 17499216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.