BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6108352)

  • 1. Enzymes related to monoamine transmitter metabolism in brain microvessels.
    Hardebo JE; Emson PC; Falck B; Owman C; Rosengren E
    J Neurochem; 1980 Dec; 35(6):1388-93. PubMed ID: 6108352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface.
    Hardebo JE; Owman C
    Ann Neurol; 1980 Jul; 8(1):1-31. PubMed ID: 6105837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central neurotransmitters and aging.
    Pradhan SN
    Life Sci; 1980 May; 26(20):1643-56. PubMed ID: 6104765
    [No Abstract]   [Full Text] [Related]  

  • 4. Barrier mechanisms for neutrotransmitter monoamines in the choroid plexus.
    Lindvall M; Hardebo JE; Owman C
    Acta Physiol Scand; 1980 Mar; 108(3):215-21. PubMed ID: 6103637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the monoamine oxidase and catechol-O-methyltransferase of the rat cerebral microvessels.
    Lai FM; Spector S
    Arch Int Pharmacodyn Ther; 1978 Jun; 233(2):227-34. PubMed ID: 686913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of trimipramine, an atypical tricyclic antidepressant, on the activities of various enzymes involved in the metabolism of biogenic amines.
    Yu PH; Boulton AA
    Prog Neuropsychopharmacol Biol Psychiatry; 1990; 14(3):409-16. PubMed ID: 1972801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on the uptake and subsequent decarboxylation of monoamine precursors in cerebral microvessels.
    Hardebo JE; Falck B; Owman C
    Acta Physiol Scand; 1979 Oct; 107(2):161-7. PubMed ID: 118637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase after inhibiting monoamine oxidase-A.
    Cho S; Duchemin AM; Neff NH; Hadjiconstantinou M
    Eur J Pharmacol; 1996 Oct; 314(1-2):51-9. PubMed ID: 8957218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the in vitro uptake of monoamines into brain microvessels.
    Hardebo JE; Owman C
    Acta Physiol Scand; 1980 Mar; 108(3):223-9. PubMed ID: 6103638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The monoamines in molluscs. I. Catecholamines: biosynthesis, disposition and inactivation (author's transl)].
    Cardot J
    J Physiol (Paris); 1979; 75(7):689-713. PubMed ID: 44729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine synthesis and metabolism in the central nervous system of mice lacking alpha-adrenoceptor subtypes.
    Vieira-Coelho MA; Serrão MP; Afonso J; Pinto CE; Moura E
    Br J Pharmacol; 2009 Oct; 158(3):726-37. PubMed ID: 19703163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the composition and characteristics of microvessels isolated from the rabbit and bovine brain.
    Algers G; Karlsson B; Sellström A
    Neurochem Res; 1986 May; 11(5):661-70. PubMed ID: 3724967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic L-amino acid decarboxylase, dopamine beta-hydroxylase, monoamine oxidase, malondialdehyde, and acid phosphatase in rat brain capillaries and kidney glomeruli in experimental hypertension.
    Valli VV; Sadasivudu B
    J Neurosci Res; 1985; 13(4):481-8. PubMed ID: 4009739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of enzyme activity of tyrosine hydroxylase and aromatic L-aminoacid decarboxylase in clonal pheochromocytoma PC12h cells by carcinogenic heterocyclic amines.
    Naoi M; Takahashi T; Ichinose H; Wakabayashi K; Sugimura T; Nagatsu T
    Biochem Biophys Res Commun; 1988 Dec; 157(2):494-9. PubMed ID: 2904812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postmortem monoamine receptor and enzyme studies in suicide.
    Mann JJ; McBride PA; Stanley M
    Ann N Y Acad Sci; 1986; 487():114-21. PubMed ID: 2436527
    [No Abstract]   [Full Text] [Related]  

  • 16. Adrenergic enzymes in cultured mouse neuroblastoma: absence of detectable aromatic-L-amino-acid decarboxylase.
    Waymire JC; Gilmer-Waymire K
    J Neurochem; 1978 Sep; 31(3):693-8. PubMed ID: 28384
    [No Abstract]   [Full Text] [Related]  

  • 17. Ontogenesis of monoamine oxidase and catechol-O-methyl transferase in various tissues of domestic swine.
    Stanton HC; Cornejeo RA; Mersmann HJ; Brown LJ; Mueller RL
    Arch Int Pharmacodyn Ther; 1975 Jan; 213(1):128-44. PubMed ID: 1156012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of supidimide on brain neurotransmitter systems of rats and mice.
    Hennies HH; Günzler WA; Flohé L
    Arzneimittelforschung; 1984; 34(11):1471-80. PubMed ID: 6084511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell culture.
    Honegger P; Richelson E
    Brain Res; 1976 Jun; 109(2):335-54. PubMed ID: 6121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sensory deprivation upon the development of transmitter systems in the visual system [proceedings].
    Biesold D; Bigl V; Usbekov M
    Act Nerv Super (Praha); 1977 May; 19(2):154-6. PubMed ID: 18872
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.