BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6108567)

  • 1. Does neuroleptic blocking of dopamine receptors continue after chronic treatment?
    Belmaker RH; Dasberg H; Ebstein RP
    Prog Biochem Pharmacol; 1980; 16():109-18. PubMed ID: 6108567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term adaptive changes in striatal dopamine function in response to chronic neuroleptic intake in rats.
    Jenner P; Kerwin R; Rupniak NM; Murugaiah K; Hall MD; Fleminger S; Marsden CD
    J Neural Transm Suppl; 1983; 18():205-12. PubMed ID: 6135741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic haloperidol does not increase specific dopamine receptor binding in rat frontal cortex.
    Meller E; Bohmaker K; Rosengarten H; Friedhoff AJ
    Res Commun Chem Pathol Pharmacol; 1982 Sep; 37(3):323-32. PubMed ID: 7178646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chronic administration of neuroleptic and anticholinergic agents on densities of D2 dopamine and muscarinic cholinergic receptors in rat striatum.
    Boyson SJ; McGonigle P; Luthin GR; Wolfe BB; Molinoff PB
    J Pharmacol Exp Ther; 1988 Mar; 244(3):987-93. PubMed ID: 2908050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine binding following prolonged haloperidol pretreatment.
    Hitri A; Weiner WJ; Borison RL; Diamond BI; Nausieda PA; Klawans HL
    Ann Neurol; 1978 Feb; 3(2):134-40. PubMed ID: 655662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antipsychotic drug effects on dopamine and serotonin receptors: in vitro binding and in vivo turnover studies.
    Bacopoulos NG
    J Pharmacol Exp Ther; 1981 Dec; 219(3):708-14. PubMed ID: 6170752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors contributing to the up regulation of dopaminergic receptors by chronic haloperidol.
    Schweitzer JW; Schwartz R; Friedhoff AJ
    Res Commun Chem Pathol Pharmacol; 1982 Oct; 38(1):21-30. PubMed ID: 7146618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal neuroleptic/dopamine receptors in schizophrenia.
    Lee T; Seeman P
    Adv Biochem Psychopharmacol; 1980; 21():435-42. PubMed ID: 6103653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic nucleotides in mental disorder.
    Belmaker RH; Zohar J; Ebstein RP
    Adv Cyclic Nucleotide Res; 1980; 12():187-98. PubMed ID: 6250353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinctions between ligand-binding sites for [3H]dopamine and D2 dopaminergic receptors characterized with [3H]spiroperidol.
    Hancock AA; Marsh CL
    Mol Pharmacol; 1984 Nov; 26(3):439-51. PubMed ID: 6238230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine-sensitive adenylate cyclase and receptor binding activities after acute and chronic neuroleptic drug treatment.
    Clement-Cormier Y
    Adv Biochem Psychopharmacol; 1980; 24():103-11. PubMed ID: 6105768
    [No Abstract]   [Full Text] [Related]  

  • 12. Decreased adenosine cyclic 3',5'-monophosphate phosphodiesterase activity in rat straitum following chronic haloperidol treatment.
    Fredholm BB
    Med Biol; 1977 Feb; 55(1):61-5. PubMed ID: 191703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic differences between agonist and antagonist interactions with binding sites for [3H]spiroperidol in rat striatum.
    Zahniser NR; Molinoff PB
    Mol Pharmacol; 1983 Mar; 23(2):303-9. PubMed ID: 6835199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F15063, a potential antipsychotic with dopamine D(2)/D(3) receptor antagonist and 5-HT(1A) receptor agonist properties: influence on immediate-early gene expression in rat prefrontal cortex and striatum.
    Bruins Slot LA; Lestienne F; Grevoz-Barret C; Newman-Tancredi A; Cussac D
    Eur J Pharmacol; 2009 Oct; 620(1-3):27-35. PubMed ID: 19695244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and pharmacological differentiation of neuroleptic effect on dopamine D-1 and D-2 receptors.
    Hyttel J; Christensen AV
    J Neural Transm Suppl; 1983; 18():157-64. PubMed ID: 6135740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual differences in the response of dopamine receptor number to chronic haloperidol treatment.
    Bannet J; Belmaker RH; Ebstein RP
    Biol Psychiatry; 1981 Nov; 16(11):1059-65. PubMed ID: 7349620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.
    Noga JT; Hyde TM; Herman MM; Spurney CF; Bigelow LB; Weinberger DR; Kleinman JE
    Synapse; 1997 Nov; 27(3):168-76. PubMed ID: 9329152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ergoline derivative LEK-8829-induced turning behavior in rats with unilateral striatal ibotenic acid lesions: interaction with bromocriptine.
    Sprah L; Zivin M; Sket D
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1093-100. PubMed ID: 10027846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Problem of neuronal reception and the dopamine hypothesis of schizophrenia].
    Lideman RR; Zlobina GP; Mukhin AG
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1980; 80(5):762-9. PubMed ID: 6106337
    [No Abstract]   [Full Text] [Related]  

  • 20. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia.
    Wolkin A; Barouche F; Wolf AP; Rotrosen J; Fowler JS; Shiue CY; Cooper TB; Brodie JD
    Am J Psychiatry; 1989 Jul; 146(7):905-8. PubMed ID: 2568094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.