BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6109287)

  • 1. Amino acid transport in human and in sheep erythrocytes.
    Young JD; Jones SE; Ellory JC
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA; Ellory JC; Young JD
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of amino acid transport in sheep erythrocytes.
    Young JD; Ellory JC
    Biochem J; 1977 Jan; 162(1):33-8. PubMed ID: 849280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA; Mason DK; Paterson JY; Young JD
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes.
    Young JD; Mason DK; Fincham DA
    J Biol Chem; 1988 Jan; 263(1):140-3. PubMed ID: 3121605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA; Mason DK; Young JD
    Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of tryptophan and other amino acids by mammalian erythrocytes.
    Young JD; Ellory JC
    J Neural Transm Suppl; 1979; (15):139-51. PubMed ID: 290751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD; Wolowyk MW; Jones SM; Ellory JC
    Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV; Christensen HN
    J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site.
    Van Winkle LJ; Campione AL; Gorman JM
    Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity.
    Devés R; Chavez P; Boyd CA
    J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep.
    Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI
    J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step.
    Angelo S; Devés R
    J Membr Biol; 1994 Aug; 141(2):183-92. PubMed ID: 7807519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid transport in normal and glutathione-deficient sheep erythrocytes.
    Young JD; Ellory JC; Tucker EM
    Biochem J; 1976 Jan; 154(1):43-8. PubMed ID: 1275912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterisation of two partially purified systems for Na+-dependent amino acid transport.
    Watts C; Wheeler KP
    Biochim Biophys Acta; 1980 Nov; 602(2):446-59. PubMed ID: 7426656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine transport in human erythrocytes.
    Ellory JC; Jones SE; Young JD
    J Physiol; 1981 Nov; 320():403-22. PubMed ID: 7320944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.