These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6109602)

  • 41. Gas chromatographic determination and gas chromatographic-mass sepectrometric analysis of chloramphenicol, thiamphenicol and their metabolites.
    Nakagawa T; Masada M; Uno T
    J Chromatogr; 1975 Sep; 111(2):355-64. PubMed ID: 1159013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of thiamphenicol excretion products in rat urine using gas-chromatography--mass-spectrometry.
    Cattabeni F; Gazzaniga A
    Postgrad Med J; 1974 Oct; 50 Suppl 5():23-7. PubMed ID: 4470812
    [No Abstract]   [Full Text] [Related]  

  • 43. Chloramphenicol and thiamphenicol.
    Fuglesang J; Bergan T
    Antibiot Chemother (1971); 1982; 31():1-21. PubMed ID: 7036847
    [No Abstract]   [Full Text] [Related]  

  • 44. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol.
    Holt DE
    Eur J Drug Metab Pharmacokinet; 1995; 20(1):35-42. PubMed ID: 7588992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of partial hepatectomy and renal impairment of thiamphenicol metabolism in rats.
    Bonanomi L; Gazzaniga A; Zaninelli P
    Pharmacol Res Commun; 1977 Jul; 9(7):609-12. PubMed ID: 896900
    [No Abstract]   [Full Text] [Related]  

  • 46. Metabolism of thiamphenicol and comparative studies of its urinary and biliary excretion with chloramphenicol in various species.
    Uesugi T; Ikeda M; Hori R; Katayama K; Arita T
    Chem Pharm Bull (Tokyo); 1974 Nov; 22(11):2714-22. PubMed ID: 4468102
    [No Abstract]   [Full Text] [Related]  

  • 47. In vivo effect of chloramphenicol and thiamphenicol on some enzymes of normal mouse liver.
    Akhnoukh S; El-Shazly N; Sallam N; El-Melegy S; El-Sewedy SM; Mostafa MH; El-Bassiouni EA
    Biochem Pharmacol; 1982 Jan; 31(1):55-7. PubMed ID: 7059351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Chloramphenicol and thiamphenicol].
    Bertrand A
    Rev Prat; 1988 Mar; 38(8):486-92. PubMed ID: 3375769
    [No Abstract]   [Full Text] [Related]  

  • 49. Formation and disposition of nitrosochloramphenicol in rat liver.
    Ascherl M; Eyer P; Kampffmeyer H
    Biochem Pharmacol; 1985 Oct; 34(20):3755-63. PubMed ID: 4052115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of acrylamide with glutathione-S-transferases.
    Dixit R; Mukhtar H; Seth PK; Murti CR
    Chem Biol Interact; 1980 Nov; 32(3):353-9. PubMed ID: 7428122
    [No Abstract]   [Full Text] [Related]  

  • 51. [Mechanism of action of chloramphenicol on the content of pyridine co-enzymes in rat liver].
    Khalmuradov AG; Shushevich SI; Mironova VN
    Vopr Med Khim; 1969; 15(5):545-8. PubMed ID: 4391656
    [No Abstract]   [Full Text] [Related]  

  • 52. DNA damage induced by chloramphenicol and its nitroso derivative: damage in intact cells.
    Yunis AA; Arimura GK; Isildar M
    Am J Hematol; 1987 Jan; 24(1):77-84. PubMed ID: 3799596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactions of the nitroso analogue of chloramphenicol with reduced glutathione.
    Eyer P; Schneller M
    Biochem Pharmacol; 1983 Mar; 32(6):1029-36. PubMed ID: 6838649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regiospecificity and stereospecificity in the enzymatic conjugation of glutathione with (+/-)-benzo(a)pyrene 4,5-oxide.
    Hernandez O; Walker M; Cox RH; Foureman GL; Smith BR; Bend JR
    Biochem Biophys Res Commun; 1980 Oct; 96(4):1494-502. PubMed ID: 7192556
    [No Abstract]   [Full Text] [Related]  

  • 55. Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model.
    Nurbaeti SN; Olivier JC; Adier C; Marchand S; Couet W; Brillault J
    J Pharm Sci; 2018 Apr; 107(4):1178-1184. PubMed ID: 29221992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of chloramphenicol oxamic acid as a new major metabolite of chloramphenicol in rats.
    Wal JM; Peleran JC; Bories GF
    FEBS Lett; 1980 Sep; 119(1):38-42. PubMed ID: 7428925
    [No Abstract]   [Full Text] [Related]  

  • 57. [3H]chloramphenicol metabolism in human volunteer: oxamic acid as a new major metabolite.
    Corpet DE; Bories GF
    Drug Metab Dispos; 1987; 15(6):925-7. PubMed ID: 2893723
    [No Abstract]   [Full Text] [Related]  

  • 58. New aspects of metabolic conjugation of chloramphenicol.
    Wal JM; Peleran JC; Perdu E; Rao D; Bories G
    Drug Metab Dispos; 1988; 16(4):635-9. PubMed ID: 2903035
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of chloramphenicol metabolites in human blood and liver as determined by high-performance liquid chromatography.
    Abou-Khalil WH; Yunis AA; Abou-Khalil S
    Pharmacology; 1988; 36(4):272-8. PubMed ID: 3380880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential in-vitro toxicity of chloramphenicol, nitroso-chloramphenicol, and thiamphenicol.
    Yunis AA
    Sex Transm Dis; 1984; 11(4 Suppl):340-2. PubMed ID: 6523313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.