These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6109602)

  • 61. Studies on the biliary excretion mechanisms of drugs. II. Biliary excretion of thiamphenicol, chloramphenicol and their glucuronides in the rat.
    Uesugi T; Ikeda M; Kanei Y; Hori R; Arita T
    Biochem Pharmacol; 1974 Aug; 23(16):2315-21. PubMed ID: 4854476
    [No Abstract]   [Full Text] [Related]  

  • 62. The interference of chloramphenicol and thiamphenicol with the biogenesis of mitochondria in animal tissues. A possible clue to the toxic action.
    Nijhof W; Kroon AM
    Postgrad Med J; 1974 Oct; 50 Suppl 5():53-9. PubMed ID: 4377849
    [No Abstract]   [Full Text] [Related]  

  • 63. [Elimination of chloramphenicol and thiamphenicol in patients with liver cirrhosis].
    Ferrari V; Gazzaniga A; Lodola E
    Boll Chim Farm; 1972 Jun; 111(6):376-81. PubMed ID: 5051312
    [No Abstract]   [Full Text] [Related]  

  • 64. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.
    Jahn SC; Rowland-Faux L; Stacpoole PW; James MO
    Biochem Biophys Res Commun; 2015 Apr; 459(3):463-8. PubMed ID: 25748576
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glutathione S-transferases in human fetal liver.
    Warholm M; Guthenberg C; Mannervik B; Pacifici GM; Rane A
    Acta Chem Scand B; 1981; 35(3):225-7. PubMed ID: 7315122
    [No Abstract]   [Full Text] [Related]  

  • 66. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.
    Isildar M; Abou-Khalil WH; Jimenez JJ; Abou-Khalil S; Yunis AA
    Toxicol Appl Pharmacol; 1988 Jun; 94(2):305-10. PubMed ID: 3388427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The use of high-pressure liquid chromatography in the preparation of tritium-labeled chloramphenicol and its analogs.
    Martin JL; Taburet AM; Pohl LR
    Anal Biochem; 1979 Jul; 96(1):215-9. PubMed ID: 495985
    [No Abstract]   [Full Text] [Related]  

  • 68. Metabolism of chloramphenicol succinate in human bone marrow.
    Ambekar CS; Cheung B; Lee J; Chan LC; Liang R; Kumana CR
    Eur J Clin Pharmacol; 2000 Aug; 56(5):405-9. PubMed ID: 11009050
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chloramphenicol sodium succinate kinetics in critically ill patients.
    Slaughter RL; Pieper JA; Cerra B; Brodsky B; Koup JR
    Clin Pharmacol Ther; 1980 Jul; 28(1):69-77. PubMed ID: 7389257
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chloramphenicol metabolism in the phenobarbital-induced rat. Comparison with thiamphenicol.
    Bella DD; Marca G; Ferrari V; Bonanomi L
    Biochem Pharmacol; 1968 Dec; 17(12):2381-90. PubMed ID: 5720346
    [No Abstract]   [Full Text] [Related]  

  • 71. Cytotoxicity and DNA damaging potency of chloramphenicol and six metabolites: a new evaluation in human lymphocytes and Raji cells.
    Lafarge-Frayssinet C; Robbana-Barnat S; Frayssinet C; Toucas L; Decloître F
    Mutat Res; 1994 Feb; 320(3):207-15. PubMed ID: 7508086
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [A new derivative of chloramphenicol: thiophenicol glycinate. Clinical research in normal, chronic bronchitic and silicotic subjects].
    ATTILI L; FINULLI M; GRISLER R
    Gazz Med Ital; 1962 Mar; 121():53-6. PubMed ID: 13863140
    [No Abstract]   [Full Text] [Related]  

  • 73. Molecular basis of chloramphenicol and thiamphenicol toxicity to DNA in vitro.
    Skolimowski IM; Knight RC; Edwards DI
    J Antimicrob Chemother; 1983 Dec; 12(6):535-42. PubMed ID: 6363379
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unified Strategy to Amphenicol Antibiotics: Asymmetric Synthesis of (-)-Chloramphenicol, (-)-Azidamphenicol, and (+)-Thiamphenicol and Its (+)-3-Floride.
    Liu J; Li Y; Ke M; Liu M; Zhan P; Xiao YC; Chen F
    J Org Chem; 2020 Dec; 85(23):15360-15367. PubMed ID: 33169603
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DNA damage in intact cells induced by bacterial metabolites of chloramphenicol.
    Isildar M; Jimenez JJ; Arimura GK; Yunis AA
    Am J Hematol; 1988 May; 28(1):40-6. PubMed ID: 3369435
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Induced stabilization of the transmembrane potential of Drosophila cells by heat shock and periodic applications of chloramphenicol.
    Behnel HJ; Weckbart G
    J Cell Sci; 1987 Feb; 87 ( Pt 1)():197-201. PubMed ID: 3667714
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Thiophenicol].
    MASI A
    Minerva Farm; 1962; 11():16-7. PubMed ID: 14470793
    [No Abstract]   [Full Text] [Related]  

  • 78. Examination of the enantiomeric purity of chloramphenicol and thiamphenicol by thermal analysis.
    Janssen G; Draguet-Brughmans M; Vanderhaeghe H; Bouché R
    J Pharm Belg; 1978; 33(4):256-60. PubMed ID: 712544
    [No Abstract]   [Full Text] [Related]  

  • 79. Determination of serum chloramphenicol by high-performance liquid chromatography.
    Crechiolo J; Hill RE
    J Chromatogr; 1979 Mar; 162(3):480-4. PubMed ID: 528617
    [No Abstract]   [Full Text] [Related]  

  • 80. [Chloramphenicol and its derivatives].
    Aubertin J; Meriet M
    Rev Prat; 1977 Oct; 27(45):2917-23. PubMed ID: 601451
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.