These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6109629)

  • 21. The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of Mg2+, phosphate, and pyrophosphate.
    Celis H; Romero I; Gómez-Puyou A
    Arch Biochem Biophys; 1985 Feb; 236(2):766-74. PubMed ID: 2982324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton-translocating pyrophosphatase of Rhodospirillum rubrum.
    Moyle J; Mitchell R; Mitchell P
    FEBS Lett; 1972 Jun; 23(2):233-6. PubMed ID: 4343931
    [No Abstract]   [Full Text] [Related]  

  • 23. Orthophosphate-pyrophosphate exchange catalyzed by soluble and membrane-bound inorganic pyrophosphatases. Role of H+ gradient.
    de Meis L; Behrens MI; Celis H; Romero I; Gómez Puyou MT; Gómez Puyou A
    Eur J Biochem; 1986 Jul; 158(1):149-57. PubMed ID: 3015606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution.
    Nyrén P; Nore BF; Strid A
    Biochemistry; 1991 Mar; 30(11):2883-7. PubMed ID: 1848779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstitution of highly purified proton-translocating pyrophosphatase from Rhodospirillum rubrum.
    Shakhov YA; Nyrén P; Baltscheffsky M
    FEBS Lett; 1982 Sep; 146(1):177-80. PubMed ID: 6128256
    [No Abstract]   [Full Text] [Related]  

  • 26. Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+- and Mg2+-dependent activities of the F1-ATPase from Rhodospirillum rubrum.
    Strid A; Nyrén P; Baltscheffsky M
    Eur J Biochem; 1988 Sep; 176(2):281-5. PubMed ID: 2901353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-linked reactions catalyzed by the purified ATPase complex (F0F1) from Rhodospirillum rubrum chromatophores.
    Schneider E; Friedl P; Schwuléra U; Dose K
    Eur J Biochem; 1980; 108(1):331-6. PubMed ID: 6447594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the membrane-bound inorganic pyrophosphatase in Rhodospirillum rubrum.
    Randahl H
    Eur J Biochem; 1979 Dec; 102(1):251-6. PubMed ID: 230038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triphenyltin as an inhibitor of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Celis H; Escobedo S; Romero I
    Arch Biochem Biophys; 1998 Oct; 358(1):157-63. PubMed ID: 9750176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis.
    Nyrén P; Lundin A
    Anal Biochem; 1985 Dec; 151(2):504-9. PubMed ID: 3006540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum .
    Baltscheffsky M; Baltscheffsky H; von Stedingk LV
    Brookhaven Symp Biol; 1966; 19():246-57. PubMed ID: 4226095
    [No Abstract]   [Full Text] [Related]  

  • 32. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean.
    Maeshima M; Yoshida S
    J Biol Chem; 1989 Nov; 264(33):20068-73. PubMed ID: 2555340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The H(+)-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes.
    Seufferheld M; Lea CR; Vieira M; Oldfield E; Docampo R
    J Biol Chem; 2004 Dec; 279(49):51193-202. PubMed ID: 15371423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes.
    Sato MH; Kasahara M; Ishii N; Homareda H; Matsui H; Yoshida M
    J Biol Chem; 1994 Mar; 269(9):6725-8. PubMed ID: 8120031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of cofactors in membrane potential generation by Rhodospirillum rubrum chromatophores incorporated in a teflon filter].
    Smirnova IA; Konstantinov AA; Skulachev VP
    Biokhimiia; 1981 Jul; 46(7):1155-66. PubMed ID: 6791704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid sequence similarities between the vacuolar proton-pumping inorganic pyrophosphatase and the c-subunit of F0F1-ATPases.
    Nyrén P; Sakai-Nore Y; Strid A
    Plant Cell Physiol; 1993 Mar; 34(2):375-8. PubMed ID: 8199778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation.
    Wu JJ; Ma JT; Pan RL
    FEBS Lett; 1991 May; 283(1):57-60. PubMed ID: 1645297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sensitive and rapid method for determination of pyrophosphatase activity.
    Shakhov YA; Nyrén P
    Acta Chem Scand B; 1982; 36(10):689-94. PubMed ID: 6131564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H+/PPi stoichiometry of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Sosa A; Celis H
    Arch Biochem Biophys; 1995 Jan; 316(1):421-7. PubMed ID: 7840646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum.
    Bengis-Garber C; Gromet-Elhanan Z
    Biochemistry; 1979 Aug; 18(16):3577-81. PubMed ID: 157774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.