These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6110469)

  • 1. Reactive proliferation of brain stem noradrenergic nerves following neonatal cerebellectomy in rats: role of target maturation on neuronal response to injury during development.
    Iacovitti L; Reis DJ; Joh TH
    Brain Res; 1981 Jan; 227(1):3-24. PubMed ID: 6110469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine.
    Schmidt RH; Bhatnagar RK
    Brain Res; 1979 Apr; 166(2):293-308. PubMed ID: 34468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of hypertrophied locus coeruleus projection to adult cerebellum after neonatal 6-hydroxydopamine.
    Schmidt RH; Bhatnagar RK
    Brain Res; 1979 Aug; 172(1):23-33. PubMed ID: 466465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased tyrosine hydroxylase activity in central adrenaline neurons after reserpine treatment.
    Chamba G; Renaud B
    Eur J Pharmacol; 1983 Sep; 92(3-4):243-8. PubMed ID: 6138264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of tyrosine hydroxylase activity after reserpine: evidence for the selective response of noradrenergic neurons.
    Sorimachi M
    Brain Res; 1975 Dec; 99(2):400-4. PubMed ID: 241464
    [No Abstract]   [Full Text] [Related]  

  • 6. Correlation between tyrosine hydroxylase activity and catecholamine concentration or turnover in brain regions.
    Bacopoulos NG; Bhatnagar RK
    J Neurochem; 1977 Oct; 29(4):639-43. PubMed ID: 22581
    [No Abstract]   [Full Text] [Related]  

  • 7. Tyrosine hydroxylase activity in noradrenergic neurons of the locus coeruleus after reserpine administration: sequential increase in cell bodies and nerve terminals.
    Zigmond RE
    J Neurochem; 1979 Jan; 32(1):23-9. PubMed ID: 32230
    [No Abstract]   [Full Text] [Related]  

  • 8. Regional changes in [3H]-noradrenaline uptake, catecholamines and catecholamine synthetic and catabolic enzymes in rat brain following neonatal 6-hydroxydopamine treatment.
    Jonsson G; Sachs C
    Med Biol; 1976 Aug; 54(4):286-97. PubMed ID: 8670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central noradrenergic neurons: identification, distribution and synaptic interactions with axons containing morphine-like peptides.
    Pickel V
    J Clin Psychiatry; 1982 Jun; 43(6 Pt 2):13-6. PubMed ID: 6177682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine hydroxylase in rat brain: developmental characteristics.
    Coyle JT; Axelrod J
    J Neurochem; 1972 Apr; 19(4):1117-23. PubMed ID: 4401682
    [No Abstract]   [Full Text] [Related]  

  • 11. Biochemical evidence for an interaction between adrenaline and noradrenaline neurons in the rat brainstem.
    Astier B; Kitahama K; Denoroy L; Berod A; Jouvet M; Renaud B
    Brain Res; 1986 Nov; 397(2):333-40. PubMed ID: 2879604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DOPA decarboxylase in the developing rat brain.
    Lamprecht F; Coyle JT
    Brain Res; 1972 Jun; 41(2):503-6. PubMed ID: 4402608
    [No Abstract]   [Full Text] [Related]  

  • 13. An abnormal regulation of tyrosine hydroxylase restricted to one catecholamine nucleus in the brain stem of spontaneously hypertensive rats.
    Renaud B; Joh TH; Reis DJ
    Brain Res; 1979 Sep; 173(1):164-7. PubMed ID: 39660
    [No Abstract]   [Full Text] [Related]  

  • 14. Induction and delayed activation of tyrosine hydroxylase in noradrenergic neurons of A1 and A2 groups of medulla oblongata of rat.
    Renaud B; Joh TH; Synder DW; Reis DJ
    Brain Res; 1979 Oct; 176(1):169-74. PubMed ID: 39662
    [No Abstract]   [Full Text] [Related]  

  • 15. Specific uptake and retrograde flow of antibody to dopamine-beta-hydroxylase by central nervous system noradrenergic neurons in vivo.
    Silver MA; Jacobowitz DM
    Brain Res; 1979 May; 167(1):65-75. PubMed ID: 88246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of norepinephrine metabolism in rat locus coeruleus neurons in response to axonal injury.
    Levin BE
    Brain Res; 1983 Dec; 289(1-2):205-14. PubMed ID: 6198035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla.
    Kitahama K; Ikemoto K; Jouvet A; Araneda S; Nagatsu I; Raynaud B; Nishimura A; Nishi K; Niwa S
    J Chem Neuroanat; 2009 Oct; 38(2):130-40. PubMed ID: 19589383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice.
    Puskás N; Papp RS; Gallatz K; Palkovits M
    Peptides; 2010 Aug; 31(8):1589-97. PubMed ID: 20434498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory increase in tyrosine hydroxylase activity in rat brain after intraventricular injections of 6-hydroxydopamine.
    Acheson AL; Zigmond MJ; Stricker EM
    Science; 1980 Feb; 207(4430):537-40. PubMed ID: 6101509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamine synthesizing enzymes in various brain regions of the genetically obese Zucker rat.
    Levin BE; Sullivan AC
    Brain Res; 1979 Aug; 171(3):560-6. PubMed ID: 38883
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.