These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 6110693)
21. Reversible effect of depolarization by K-propionate on sub-miniature endplate potential to bell-miniature endplate potential ratios, on miniature endplate potential frequencies and amplitudes, and on synaptic vesicle diameters and densities in frog neuromuscular junctions. Florey E; Kriebel ME Neuroscience; 1988 Dec; 27(3):1055-72. PubMed ID: 2855260 [TBL] [Abstract][Full Text] [Related]
22. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. Haimann C; Torri-Tarelli F; Fesce R; Ceccarelli B J Cell Biol; 1985 Nov; 101(5 Pt 1):1953-65. PubMed ID: 3932368 [TBL] [Abstract][Full Text] [Related]
23. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. Ceccarelli B; Grohovaz F; Hurlbut WP J Cell Biol; 1979 Apr; 81(1):163-77. PubMed ID: 39079 [TBL] [Abstract][Full Text] [Related]
24. Polyneuronal innervation and quantal transmitter release in formamide-treated frog sartorius muscles. Herrera AA J Physiol; 1984 Oct; 355():267-80. PubMed ID: 6149312 [TBL] [Abstract][Full Text] [Related]
25. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. Cooper RL; Winslow JL; Govind CK; Atwood HL J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756 [TBL] [Abstract][Full Text] [Related]
26. Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat. Santafé MM; Garcia N; Lanuza MA; Uchitel OD; Tomás J Neuroscience; 2001; 102(3):697-708. PubMed ID: 11226706 [TBL] [Abstract][Full Text] [Related]
27. Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. Hurlbut WP; Iezzi N; Fesce R; Ceccarelli B J Physiol; 1990 Jun; 425():501-26. PubMed ID: 2120425 [TBL] [Abstract][Full Text] [Related]
28. Is the MEPP due to the release of one vesicle or to the simultaneous release of several vesicles at one active zone? Tremblay JP; Laurie RE; Colonnier M Brain Res; 1983 Dec; 287(3):299-314. PubMed ID: 6318883 [TBL] [Abstract][Full Text] [Related]
29. The relation between tonicity and impulse-evoked transmitter release in the frog. Kita H; Narita K; Van der Kloot W J Physiol; 1982 Apr; 325():213-22. PubMed ID: 6286938 [TBL] [Abstract][Full Text] [Related]
30. The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle. Trussell LO; Grinnell AD J Neurosci; 1985 Jan; 5(1):243-54. PubMed ID: 2856934 [TBL] [Abstract][Full Text] [Related]
31. Lack of correlation between physiological and morphological features of regenerating frog neuromuscular junctions. Ding R Brain Res; 1982 Dec; 253(1-2):47-55. PubMed ID: 6295559 [TBL] [Abstract][Full Text] [Related]
33. Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased. Van der Kloot W; Molgó J; Cameron R; Colasante C J Physiol; 2002 Jun; 541(Pt 2):385-93. PubMed ID: 12042346 [TBL] [Abstract][Full Text] [Related]
34. Influence of protein kinase C-stimulation by a phorbol ester on neurotransmitter release at frog end-plates. Caratsch CG; Schumacher S; Grassi F; Eusebi F Naunyn Schmiedebergs Arch Pharmacol; 1988 Jan; 337(1):9-12. PubMed ID: 2897084 [TBL] [Abstract][Full Text] [Related]
35. Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse--I. Naturally occurring variability in active zone structure. Pawson PA; Grinnell AD; Wolowske B J Neurocytol; 1998 Jun; 27(5):361-77. PubMed ID: 9923981 [TBL] [Abstract][Full Text] [Related]
36. Acetylcholine receptor bars and transmitter release in frog neuromuscular junctions. Dorlöchter M; Meurer S; Wernig A Neuroscience; 1993 Feb; 52(4):987-99. PubMed ID: 8450983 [TBL] [Abstract][Full Text] [Related]
37. Effects of an inhibitor of the synaptic vesicle acetylcholine transport system on quantal neurotransmitter release: an electrophysiological study. Lupa MT Brain Res; 1988 Sep; 461(1):118-26. PubMed ID: 3265645 [TBL] [Abstract][Full Text] [Related]
38. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction. Thesleff S; Molgó J; Lundh H Brain Res; 1983 Mar; 264(1):89-97. PubMed ID: 6133583 [TBL] [Abstract][Full Text] [Related]
39. A study of the mechanism of quantal transmitter release at a chemical synapse. Blioch ZL; Glagoleva IM; Liberman EA; Nenashev VA J Physiol; 1968 Nov; 199(1):11-35. PubMed ID: 4300871 [TBL] [Abstract][Full Text] [Related]
40. Membrane events related to transmitter release in mouse motor nerve terminals captured by ultrarapid cryofixation. Velasco ME; Pécot-Dechavassine M J Neurocytol; 1993 Oct; 22(10):913-23. PubMed ID: 7903687 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]