BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6111383)

  • 21. Stimulation of gamma-[3H]aminobutyric acid release from cultured mouse cerebral cortex neurons by sulphur-containing excitatory amino acid transmitter candidates: receptor activation mediates two distinct mechanisms of release.
    Dunlop J; Grieve A; Schousboe A; Griffiths R
    J Neurochem; 1991 Oct; 57(4):1388-97. PubMed ID: 1680165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic inhibition by clonidine of neurotransmitter amino acid release in various brain regions.
    Kamisaki Y; Hamahashi T; Hamada T; Maeda K; Itoh T
    Eur J Pharmacol; 1992 Jun; 217(1):57-63. PubMed ID: 1356800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterocarrier-mediated reciprocal modulation of glutamate and glycine release in rat cerebral cortex and spinal cord synaptosomes.
    Bonanno G; Vallebuona F; Donadini F; Fontana G; Fedele E; Raiteri M
    Eur J Pharmacol; 1994 Jan; 252(1):61-7. PubMed ID: 7908643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple Cl(-)-independent binding sites for the excitatory amino acids: glutamate, aspartate and cysteine sulfinate in rat brain membranes.
    Pin JP; Rumigny JF; Bockaert J; Recasens M
    Brain Res; 1987 Jan; 402(1):11-20. PubMed ID: 2881598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitatory amino acid-evoked release of gamma-[3H]aminobutyric acid from striatal neurons in primary culture.
    Weiss S
    J Neurochem; 1988 Aug; 51(2):435-41. PubMed ID: 3392538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic calcium channel blockers enhance [3H]purine release from rat brain cortical synaptosomes.
    Wu PH; Moron M; Barraco R
    Neurochem Res; 1984 Aug; 9(8):1019-31. PubMed ID: 6149478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen.
    Clow DW; Jhamandas K
    J Pharmacol Exp Ther; 1989 Feb; 248(2):722-8. PubMed ID: 2563769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of two convulsant beta-carboline derivatives, DMCM and beta-CCM, on regional neurotransmitter amino acid levels and on in vitro D-[3H]aspartate release in rodents.
    Chapman AG; Cheetham SC; Hart GP; Meldrum BS; Westerberg E
    J Neurochem; 1985 Aug; 45(2):370-81. PubMed ID: 2861248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamic acid and gamma-aminobutyric acid modulate each other's release through heterocarriers sited on the axon terminals of rat brain.
    Bonanno G; Pittaluga A; Fedele E; Fontana G; Raiteri M
    J Neurochem; 1993 Jul; 61(1):222-30. PubMed ID: 8099950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphine enhances the release of 3H-purines from rat brain cerebral cortical prisms.
    Wu PH; Phillis JW; Yuen H
    Pharmacol Biochem Behav; 1982 Oct; 17(4):749-55. PubMed ID: 7178185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of adenosine in the effect of antidepressants on glutamate and aspartate release in the rat prefrontal cortex.
    Gołembiowska K; Dziubina A
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jun; 363(6):663-70. PubMed ID: 11414661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of excitatory amino acid analogues on the release of D-[3H]aspartate from chick retina.
    López-Colomé AM; Roberts PJ
    Eur J Pharmacol; 1987 Oct; 142(3):409-17. PubMed ID: 3428354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. L-2-chloropropionic acid inhibits glutamate and aspartate release from rat cerebellar slices but does not activate cerebellar NMDA receptors: implications for L-2-chloropropionic acid-induced neurotoxicity.
    Widdowson PS; Briggs I; BoSmith RE; Sturgess NC; Rosbottom A; Smith JC; Wyatt I
    Neurotoxicology; 1997; 18(1):169-77. PubMed ID: 9215999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization.
    Pittaluga A; Raiteri M
    J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of excitatory amino acid receptors in K+- and glutamate-evoked release of endogenous adenosine from rat cortical slices.
    Hoehn K; White TD
    J Neurochem; 1990 Jan; 54(1):256-65. PubMed ID: 1967143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats.
    Ahmad S; Fowler LJ; Whitton PS
    Brain Res; 2004 Dec; 1029(1):41-7. PubMed ID: 15533314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte cell lineage.
    Gallo V; Giovannini C; Suergiu R; Levi G
    J Neurochem; 1989 Jan; 52(1):1-9. PubMed ID: 2562803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen.
    Burke SP; Nadler JV
    J Neurochem; 1988 Nov; 51(5):1541-51. PubMed ID: 2902197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of glutamate, aspartate and related derivatives on cerebellar purkinje cell dendrites in the rat: an in vitro study.
    Crepel F; Dhanjal SS; Sears TA
    J Physiol; 1982 Aug; 329():297-317. PubMed ID: 6754909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of depolarization on the maturation of cerebellar granule cells in culture.
    Balázs R; Gallo V; Kingsbury A
    Brain Res; 1988 May; 468(2):269-76. PubMed ID: 2898277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.