These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6111760)

  • 41. Role of specialized microvilli and the fertilization envelope in the spatial positioning of blastomeres in early development of embryos of the starfish Astropecten scoparius.
    Matsunaga M; Uemura I; Tamura M; Nemoto S
    Biol Bull; 2002 Jun; 202(3):213-22. PubMed ID: 12086992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the ionic composition of the medium on the sensitivity of fertilized sea urchin ova to neuropharmacological preparations.
    Sorokin LV
    Sov J Dev Biol; 1975 May; 5(3):273-7. PubMed ID: 235791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division.
    Summers RG; Musial CE; Cheng PC; Leith A; Marko M
    J Electron Microsc Tech; 1991 May; 18(1):24-30. PubMed ID: 2056349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of neurohumours in early embryogenesis. 3. Pharmacological analysis of the role of neurohumours in cleavage divisions.
    Buznikov GA; Kost AN; Kucherova NF; Mndzhoyan AL; Suvorov NN; Berdysheva LV
    J Embryol Exp Morphol; 1970 Jun; 23(3):549-69. PubMed ID: 4394387
    [No Abstract]   [Full Text] [Related]  

  • 45. Cell polarity emerges at first cleavage in sea urchin embryos.
    Alford LM; Ng MM; Burgess DR
    Dev Biol; 2009 Jun; 330(1):12-20. PubMed ID: 19298809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic interventions and a comparison with the monoamine depleter, reserpine.
    Buznikov GA; Nikitina LA; Rakić LM; Milosević I; Bezuglov VV; Lauder JM; Slotkin TA
    Brain Res Bull; 2007 Sep; 74(4):221-31. PubMed ID: 17720543
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of products of the enzymatic transformation of tryptamine on fertilized ovicells of sea urchins].
    Markova LN; Buznikov GA; Mukhina NA; Smushkevich IuI; Suvorov NN
    Dokl Akad Nauk SSSR; 1971 Nov; 201(3):754-7. PubMed ID: 5167152
    [No Abstract]   [Full Text] [Related]  

  • 48. THE R OLE OF NEUROHUMOURS IN EARLY EMBRYOGENESIS. I. SEROTONIN CONTENT OF DEVELOPING EMBRYOS OF SEA URCHIN AND LOACH.
    BUZNIKOV GA; CHUDAKOVA IV; ZVEZDINA ND
    J Embryol Exp Morphol; 1964 Dec; 12():563-73. PubMed ID: 14251469
    [No Abstract]   [Full Text] [Related]  

  • 49. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular indices of cell lineage specification in sea urchin embryos.
    Angerer RC; Davidson EH
    Science; 1984 Dec; 226(4679):1153-60. PubMed ID: 6594757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The toxic effect of stichoposide A 1 from Stichopus japonicus selenka on early embryogenesis of the sea urchin.
    Anisimov MM; Kuznetsova TA; Shirokov VP; Prokofyeva NG; Elyakov GB
    Toxicon; 1972 Mar; 10(2):187-8. PubMed ID: 4673049
    [No Abstract]   [Full Text] [Related]  

  • 52. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1990 Sep; 141(1):41-54. PubMed ID: 2391005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell adhesion-dependent regulation of cell growth during sea urchin development.
    Ghersi G; Salamone M; Levi G; Vittorelli ML
    Eur J Cell Biol; 1996 Mar; 69(3):259-66. PubMed ID: 8900490
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of pseudopterosin A on cell division, cell cycle progression, DNA, and protein synthesis in cultured sea urchin embryos.
    Ettouati WS; Jacobs RS
    Mol Pharmacol; 1987 May; 31(5):500-5. PubMed ID: 3574294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos.
    Holy J
    J Toxicol Environ Health A; 1998 Jun; 54(4):319-33. PubMed ID: 9638902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity.
    Buznikov GA; Nikitina LA; Bezuglov VV; Milosević I; Lazarević L; Rogac L; Ruzdijić S; Slotkin TA; Rakić LM
    Brain Res Bull; 2008 Jan; 75(1):94-100. PubMed ID: 18158101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Study of the regulation of cytokinesis in early embryos of the sea urchin using the electric breakdown of a membrane].
    Grigor'ev NG; Shmukler IuB
    Dokl Akad Nauk SSSR; 1986; 287(2):463-6. PubMed ID: 3009116
    [No Abstract]   [Full Text] [Related]  

  • 59. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Midbody sealing after cytokinesis in embryos of the sea urchin Arabacia punctulata.
    Sanger JM; Pochapin MB; Sanger JW
    Cell Tissue Res; 1985; 240(2):287-92. PubMed ID: 3995553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.