These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6112015)

  • 41. Unusual redox behaviour of cytochrome b-561 from bovine chromaffin granule membranes.
    Apps DK; Boisclair MD; Gavine FS; Pettigrew GW
    Biochim Biophys Acta; 1984 Jan; 764(1):8-16. PubMed ID: 6696883
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lysosomal H+-translocating ATPase has a similar subunit structure to chromaffin granule H+-ATPase complex.
    Moriyama Y; Nelson N
    Biochim Biophys Acta; 1989 Apr; 980(2):241-7. PubMed ID: 2522796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bile salt delipidation, residual phospholipids and reactivation of the Ca2+-ATPase from sarcoplasmic reticulum.
    Swoboda G; Hasselbach W
    Z Naturforsch C Biosci; 1982; 37(3-4):289-98. PubMed ID: 6461976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnesium mediated change in physical state of phospholipid modulates membrane ATPase activity.
    Yang FY; Huang YG; Zhang XF; Guo BQ
    Magnes Res; 1988 Jul; 1(1-2):13-21. PubMed ID: 2908561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topography of a vacuolar-type H+-translocating ATPase: chromaffin-granule membrane ATPase I.
    Apps DK; Percy JM; Perez-Castineira JR
    Biochem J; 1989 Oct; 263(1):81-8. PubMed ID: 2532503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phospholipid-protein interactions in the Ca2+-adenosine triphosphatase of sarcoplasmic reticulum.
    Knowles AF; Eytan E; Racker E
    J Biol Chem; 1976 Sep; 251(17):5161-65. PubMed ID: 134036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specificity of acidic phospholipids (CL & PA) in the activation of mitochondrial F0F1 ATPase by Mg2+.
    Ye JJ; Lin ZH
    Biochem Int; 1990 Oct; 22(2):219-26. PubMed ID: 2151017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adenylate cyclase activity of adrenal chromaffin vesicles.
    Carmichael SW
    Acta Histochem; 1984; 75(2):189-98. PubMed ID: 6441426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane dopamine beta-hydroxylase: a precursor for the soluble enzyme in the bovine adrenal medulla.
    Helle KB; Reed RK; Pihl KE; Serck-Hanssen G
    Int J Biochem; 1984; 16(6):641-50. PubMed ID: 6468729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid modulation of the activity and temperature dependence of the purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes.
    George R; Lewis RN; McElhaney RN
    Isr J Med Sci; 1987 May; 23(5):374-9. PubMed ID: 2959635
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and mode of action of synexin: a protein enhancing calcium-induced membrane aggregation.
    Morris SJ; Hughes JM; Whittaker VP
    J Neurochem; 1982 Aug; 39(2):529-36. PubMed ID: 6211522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A model for the molecular organization of cytochrome beta-561 in chromaffin granule membranes.
    Degli Esposti M; Kamensky YuA ; Arutjunjan AM; Konstantinov AA
    FEBS Lett; 1989 Aug; 254(1-2):74-8. PubMed ID: 2776888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Divalent cation-induced aggregation of chromaffin granule membranes.
    Morris SJ; Chiu VC; Haynes DH
    Membr Biochem; 1979; 2(2):163-201. PubMed ID: 42003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Internal anion binding site and membrane potential dominate the regulation of proton pumping by the chromaffin granule ATPase.
    Moriyama Y; Nelson N
    Biochem Biophys Res Commun; 1987 Nov; 149(1):140-4. PubMed ID: 2446615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vacuolar H(+)-ATPase of adrenal secretory granules. Rapid partial purification and reconstitution into proteoliposomes.
    Perez-CastiƱeira JR; Apps DK
    Biochem J; 1990 Oct; 271(1):127-31. PubMed ID: 2171495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Localization of lysophosphatidylcholine in bovine chromaffin granules.
    de Oliveira Filgueiras OM; van den Besselaar AM; van den Bosch H
    Biochim Biophys Acta; 1979 Nov; 558(1):73-84. PubMed ID: 497199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ordering of bulk membrane lipid or protein promotes activity of plasma membrane Mg2+ATPase.
    Riordan JR
    Can J Biochem; 1980 Oct; 58(10):928-34. PubMed ID: 6109559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A lipid requirement for the (Ca2+ + Mg2+)-activated ATPase of erythrocyte membranes.
    Ronner P; Gazzotti P; Carafoli E
    Arch Biochem Biophys; 1977 Mar; 179(2):578-83. PubMed ID: 139849
    [No Abstract]   [Full Text] [Related]  

  • 59. Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein.
    Zachowski A; Henry JP; Devaux PF
    Nature; 1989 Jul; 340(6228):75-6. PubMed ID: 2544808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.