These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6112046)

  • 21. The antidromic compound action potential of the auditory nerve.
    Brown MC
    J Neurophysiol; 1994 May; 71(5):1826-34. PubMed ID: 8064350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve.
    Sinex DG; Havey DC
    J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thresholds for primary auditory fibers using statistically defined criteria.
    Geisler CD; Deng L; Greenberg SR
    J Acoust Soc Am; 1985 Mar; 77(3):1102-9. PubMed ID: 3980864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eighth nerve fiber firing features in normal-hearing rabbits.
    Borg E; Engström B; Linde G; Marklund K
    Hear Res; 1988 Nov; 36(2-3):191-201. PubMed ID: 3209492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Stimulus level dependence of BERA potential amplitudes].
    Hoth S
    Laryngol Rhinol Otol (Stuttg); 1985 Jul; 64(7):368-74. PubMed ID: 2993769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Click-evoked gross potentials and single-unit thresholds in acoustically traumatized cats.
    Pettigrew AM; Liberman MC; Kiang NY
    Ann Otol Rhinol Laryngol Suppl; 1984; 112():83-96. PubMed ID: 6431888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift.
    Henry WR; Mulroy MJ
    Hear Res; 1995 Apr; 84(1-2):81-90. PubMed ID: 7642458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and immunochemical approaches to the study of the auditory system.
    Wenthold RJ
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):334-9. PubMed ID: 2863293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea.
    Schoonhoven R; Keijzer J; Versnel H; Prijs VF
    J Acoust Soc Am; 1994 Apr; 95(4):2104-21. PubMed ID: 8201107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates.
    Liberman MC; Dodds LW
    Hear Res; 1984 Oct; 16(1):43-53. PubMed ID: 6511672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antidromic responses of single units from the spiral ganglion.
    Brown MC
    J Neurophysiol; 1994 May; 71(5):1835-47. PubMed ID: 8064351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses.
    Schnee ME; Castellano-Muñoz M; Ricci AJ
    J Neurophysiol; 2013 Jul; 110(1):204-20. PubMed ID: 23596330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Simulation of spontaneous discharge and short-term adaptation in acoustic nerve fibers].
    Bibikov NG; Ivanitskiĭ GA
    Biofizika; 1985; 30(1):141-4. PubMed ID: 3978136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive changes in firing rates in goldfish auditory fibers as related to changes in mean amplitude of excitatory postsynaptic potentials.
    Kuno M
    J Neurophysiol; 1983 Sep; 50(3):573-81. PubMed ID: 6311994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postnatal development of physiological responses in auditory nerve fibers.
    Dolan DF; Teas DC; Walton JP
    J Acoust Soc Am; 1985 Aug; 78(2):544-54. PubMed ID: 4031253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the synaptic region of auditory hair cells during noise-induced temporary threshold shift.
    Mulroy MJ; Fromm RF; Curtis S
    Hear Res; 1990 Nov; 49(1-3):79-87. PubMed ID: 2292510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurochemical basis of auditory fatigue: a new hypothesis.
    Ylikoski J; Lehtosalo J
    Acta Otolaryngol; 1985; 99(3-4):353-62. PubMed ID: 2409739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Correlation of the electrical and mechanical resonance frequencies of the cochlear hair cells of the auditory nerve fibers in the pigeon].
    Temchin AN
    Neirofiziologiia; 1988; 20(6):811-4. PubMed ID: 3249607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.