These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6113122)

  • 1. Sulfoxide reduction. In vitro reduction of sulindac by rat hepatic cytosolic enzymes.
    Ratnayake JH; Hanna PE; Anders MW; Duggan DE
    Drug Metab Dispos; 1981; 9(2):85-7. PubMed ID: 6113122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin-dependent sulfoxide reduction by rat renal cytosol.
    Anders MW; Ratnayake JH; Hanna PE; Fuchs JA
    Drug Metab Dispos; 1981; 9(4):307-10. PubMed ID: 6114827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha, beta-ketoalkene reduction. A novel reduction pathway in mammalian tissues.
    Lindstrom TD; Whitaker GW
    Drug Metab Dispos; 1984; 12(1):72-6. PubMed ID: 6141916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfoxide reduction: in vitro reduction of oxyprothepine-8-sulfoxide by rat hepatic cytosolic and microsomal enzymes.
    Helia O; Pauliková I
    Pharmazie; 1993 Oct; 48(10):784-5. PubMed ID: 7903462
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics of the tissue distributions of sulindac and metabolites. Relevance to sites and rates of bioactivation.
    Duggan DE; Hooke KF; Hwang SS
    Drug Metab Dispos; 1980; 8(4):241-6. PubMed ID: 6105058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism in vitro of sulindac. Sulfoxide-reducing enzyme systems in guinea pig liver.
    Kitamura S; Tatsumi K; Yoshimura H
    J Pharmacobiodyn; 1980 Jun; 3(6):290-8. PubMed ID: 6775073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of sulindac metabolism by dimethyl sulfoxide in the rat.
    Swanson BN; Mojaverian P; Boppana VK
    J Toxicol Environ Health; 1983; 12(2-3):213-22. PubMed ID: 6655731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro metabolism of sulindac and sulindac sulfide: enzymatic formation of sulfoxide and sulfone.
    Kitamura S; Tatsumi K
    Jpn J Pharmacol; 1982 Oct; 32(5):833-8. PubMed ID: 7176218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulphoxide reduction by rat and rabbit tissues in vitro.
    Lee SC; Renwick AG
    Biochem Pharmacol; 1995 May; 49(11):1557-65. PubMed ID: 7786296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dimethyl sulfoxide on sulindac disposition in rats.
    Swanson BN; Mojaverian P; Boppana VK; Dudash MR
    Drug Metab Dispos; 1981; 9(6):499-502. PubMed ID: 6120805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimethyl sulfoxide inhibits bioactivation of sulindac.
    Swanson BN; Boppana VK; Vlasses PH; Rotmensch HH; Ferguson RK
    J Lab Clin Med; 1983 Jul; 102(1):95-101. PubMed ID: 6854139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulindac: therapeutic implications of the prodrug/pharmacophore equilibrium.
    Duggan DE
    Drug Metab Rev; 1981; 12(2):325-37. PubMed ID: 7040018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphoxide reduction by rat intestinal flora and by Escherichia coli in vitro.
    Lee SC; Renwick AG
    Biochem Pharmacol; 1995 May; 49(11):1567-76. PubMed ID: 7786297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the biologically active form of sulindac.
    Duggan DE; Hooke KF; Risley EA; Shen TY; Arman CG
    J Pharmacol Exp Ther; 1977 Apr; 201(1):8-13. PubMed ID: 850147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal metabolism of sulindac: functional implications.
    Miller MJ; Bednar MM; McGiff JC
    J Pharmacol Exp Ther; 1984 Nov; 231(2):449-56. PubMed ID: 6436473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturation of an alpha, beta-unsaturated ketone: a novel xenobiotic biotransformation in mammals.
    Lindstrom TD; Whitaker GW
    Xenobiotica; 1984 Jul; 14(7):503-8. PubMed ID: 6506762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. I. An application of pharmacokinetic model for reversible metabolism.
    Lin JH; Yeh KC; Duggan DE
    Drug Metab Dispos; 1985; 13(5):602-7. PubMed ID: 2865111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of sulphinpyrazone and sulindac by intestinal bacteria.
    Strong HA; Renwick AG; George CF; Liu YF; Hill MJ
    Xenobiotica; 1987 Jun; 17(6):685-96. PubMed ID: 3630204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.