BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6113533)

  • 1. Studies on the role of the liver and splanchnic tissues in the production of carbohydrate intolerance in uremia.
    Delmez JA; Rutherford WE; Klahr S; Blondin J
    Metabolism; 1981 Jul; 30(7):658-65. PubMed ID: 6113533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate, alanine and glutamine metabolism in isolated canine pup liver cells.
    Martin G; Baverel G
    Biochim Biophys Acta; 1983 Oct; 760(2):230-7. PubMed ID: 6138100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoglycemia induced by insulin increases hepatic capacity to produce glucose from gluconeogenic amino acids.
    Borba-Murad GR; Vardanega-Peicher M; Souza HM; Lopes G; Fonseca MH; Bazotte RB
    Zhongguo Yao Li Xue Bao; 1999 Dec; 20(12):1083-6. PubMed ID: 11189196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced gluconeogenesis from lactate in perfused livers after endurance training.
    Sumida KD; Urdiales JH; Donovan CM
    J Appl Physiol (1985); 1993 Feb; 74(2):782-7. PubMed ID: 8458796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that L-glutamine is better than L-alanine as gluconeogenic substrate in perfused liver of weaned fasted rats submitted to short-term insulin-induced hypoglycaemia.
    Oliveira-Yamashita F; Garcia RF; Felisberto-Junior AM; Curi R; Bazotte RB
    Cell Biochem Funct; 2009 Jan; 27(1):30-4. PubMed ID: 19107875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic uptake and release of glucose, lactate, and amino acids in acutely uremic dogs.
    Cianciaruso B; Bellizzi V; Napoli R; Saccá L; Kopple JD
    Metabolism; 1991 Mar; 40(3):261-9. PubMed ID: 2000038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of the metabolic pathways of hepatic glucose synthesis in vivo with 13C-labeled substrates.
    Kalderon B; Gopher A; Lapidot A
    FEBS Lett; 1987 Mar; 213(1):209-14. PubMed ID: 2881806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets.
    Rémésey C; Demigné C; Aufrère J
    Biochem J; 1978 Feb; 170(2):321-9. PubMed ID: 637846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis.
    Ohtake Y; Clemens MG
    Am J Physiol; 1991 Mar; 260(3 Pt 1):E453-8. PubMed ID: 2003598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of enhanced glucagon sensitivity as the cause of glucose intolerance in acutely uremic rats.
    Mondon CE; Reaven GM
    Am J Clin Nutr; 1980 Jul; 33(7):1456-60. PubMed ID: 6249112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired glucagon-stimulated glucose output in livers of acutely uremic rats.
    Perez GO; Rabinovitch A; Rietberg B; Owens B; Schiff ER
    J Lab Clin Med; 1982 May; 99(5):669-77. PubMed ID: 6279748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hepatic gluconeogenic capacity for selected precursors after endurance training.
    Sumida KD; Donovan CM
    J Appl Physiol (1985); 1995 Dec; 79(6):1883-8. PubMed ID: 8847248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased gluconeogenesis in the rat at term gestation.
    Valcarce C; Cuezva JM; Medina JM
    Life Sci; 1985 Aug; 37(6):553-60. PubMed ID: 2991686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reduced renal mass and dietary protein intake on amino acid release and glucose uptake by rat muscle in vitro.
    Harter HR; Karl IE; Klahr S; Kipnis DM
    J Clin Invest; 1979 Aug; 64(2):513-23. PubMed ID: 457866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glucose production from lactate in experimental sepsis.
    Clemens MG; Chaudry IH; McDermott PH; Baue AE
    Am J Physiol; 1983 Jun; 244(6):R794-800. PubMed ID: 6407337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo portal-hepatic venous gradients of glycogenic precursors and incorporation of D-[3-3H]glucose into liver glycogen in the awake rat.
    Dobson GP; Veech RL; Passonneau JV; Huang MT
    J Biol Chem; 1990 Sep; 265(27):16350-7. PubMed ID: 2204622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of adenosine monophosphate in regulation of metabolic pathways of perfused rat liver.
    Hunter AR; Jefferson LS
    Biochem J; 1969 Feb; 111(4):537-45. PubMed ID: 5774478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconeogenesis in tumor-influenced hepatocytes.
    Roh MS; Ekman L; Jeevanandam M; Brennan MF
    Surgery; 1984 Aug; 96(2):427-34. PubMed ID: 6463871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver.
    Hems DA; Whitton PD
    Biochem J; 1973 Nov; 136(3):705-9. PubMed ID: 4780695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway and carbon sources for hepatic glycogen repletion in dogs.
    Mitrakou A; Jones R; Okuda Y; Pena J; Nurjhan N; Field JB; Gerich JE
    Am J Physiol; 1991 Feb; 260(2 Pt 1):E194-202. PubMed ID: 1996623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.