BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6113787)

  • 1. Lack of correlation between melanin affinity and retinopathy in mice and cats treated with chloroquine or flunitrazepam.
    Kuhn H; Keller P; Kovács E; Steiger A
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1981; 216(3):177-90. PubMed ID: 6113787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural alterations in rat and cat retina and pigment epithelium induced by chloroquine.
    Ivanina TA; Zueva MV; Lebedeva MN; Bogoslovsky AI; Bunin AJ
    Graefes Arch Clin Exp Ophthalmol; 1983; 220(1):32-8. PubMed ID: 6832596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoradiographic evidence for binding of 3H-flunitrazepam (Rohypnol) to melanin granules in the cat eye.
    Kuhn H
    Experientia; 1980 Jul; 36(7):863-5. PubMed ID: 6105091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy.
    Mahon GJ; Anderson HR; Gardiner TA; McFarlane S; Archer DB; Stitt AW
    Curr Eye Res; 2004 Apr; 28(4):277-84. PubMed ID: 15259297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal toxicity of chloroquine hydrochloride administered by intraperitoneal injection.
    Gaynes BI; Torczynski E; Varro Z; Grostern R; Perlman J
    J Appl Toxicol; 2008 Oct; 28(7):895-900. PubMed ID: 18484088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural alterations of tapetal cells in the retina of cats induced by prolonged treatment with chloroquine.
    Kuhn H; Steiger A
    Cell Tissue Res; 1981; 215(2):263-9. PubMed ID: 7011564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ultrastructural changes in the retinal ganglion cells and retinal pigment epithelium of white rats exposed to chloroquine].
    Ivanina TA; Lebedeva MN
    Med Parazitol (Mosk); 1981; 50(4):34-6. PubMed ID: 7278810
    [No Abstract]   [Full Text] [Related]  

  • 8. Melanin: blackguard or red herring? Another look at chloroquine retinopathy.
    Banks CN
    Aust N Z J Ophthalmol; 1987 Nov; 15(4):365-70. PubMed ID: 3325085
    [No Abstract]   [Full Text] [Related]  

  • 9. Chloroquine retinopathy in the rhesus monkey.
    Rosenthal AR; Kolb H; Bergsma D; Huxsoll D; Hopkins JL
    Invest Ophthalmol Vis Sci; 1978 Dec; 17(12):1158-75. PubMed ID: 102610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The blood-retinal barrier in chloroquine retinopathy.
    Raines MF; Bhargava SK; Rosen ES
    Invest Ophthalmol Vis Sci; 1989 Aug; 30(8):1726-31. PubMed ID: 2759787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental chloroquine retinopathy.
    Matsumura M; Ohkuma M; Tsukahara I
    Ophthalmic Res; 1986; 18(3):172-9. PubMed ID: 3018650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of long-term chloroquine exposure on the phospholipid metabolism in retina and pigment epithelium of the mouse.
    Hallberg A; Naeser P; Andersson A
    Acta Ophthalmol (Copenh); 1990 Apr; 68(2):125-30. PubMed ID: 2356698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigmented-MDCK (P-MDCK) cell line with tunable melanin expression: an in vitro model for the outer blood-retinal barrier.
    Kadam RS; Scheinman RI; Kompella UB
    Mol Pharm; 2012 Nov; 9(11):3228-35. PubMed ID: 23003570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway.
    Schraermeyer U; Peters S; Thumann G; Kociok N; Heimann K
    Exp Eye Res; 1999 Feb; 68(2):237-45. PubMed ID: 10068489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin.
    Inoue S; Hasegawa K; Ito S; Wakamatsu K; Fujita K
    Pigment Cell Res; 1993 Oct; 6(5):354-8. PubMed ID: 8302774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.
    Rimpelä AK; Hagström M; Kidron H; Urtti A
    J Control Release; 2018 Aug; 283():261-268. PubMed ID: 29859954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of [3H]flunitrazepam binding to melanin.
    Testorf MF; Kronstrand R; Svensson SP; Lundström I; Ahlner J
    Anal Biochem; 2001 Nov; 298(2):259-64. PubMed ID: 11700981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocular melanin pigmentation anomalies in cats, cattle, mink, and mice with Chediak-Higashi syndrome: histologic observations.
    Collier LL; Prieur DJ; King EJ
    Curr Eye Res; 1984 Oct; 3(10):1241-51. PubMed ID: 6488853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The melanin binding of bisoprolol and its toxicological relevance.
    Steiner K; Bühring KU; Merck E
    Lens Eye Toxic Res; 1990; 7(3-4):319-33. PubMed ID: 1983104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Distribution to Retinal Pigment Epithelium: Studies on Melanin Binding, Cellular Kinetics, and Single Photon Emission Computed Tomography/Computed Tomography Imaging.
    Rimpelä AK; Schmitt M; Latonen S; Hagström M; Antopolsky M; Manzanares JA; Kidron H; Urtti A
    Mol Pharm; 2016 Sep; 13(9):2977-86. PubMed ID: 26741026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.