BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1654 related articles for article (PubMed ID: 6113854)

  • 41. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Keller RK; Zhao Z; Chambers C; Ness GC
    Arch Biochem Biophys; 1996 Apr; 328(2):324-30. PubMed ID: 8645011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial biosynthesis of cholesterol in Leydig cells from rat testis.
    Pignataro OP; Radicella JP; Calvo JC; Charreau EH
    Mol Cell Endocrinol; 1983 Nov; 33(1):53-67. PubMed ID: 6357898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of sterol synthesis by the monoterpene perillyl alcohol is unaffected by competitive 3-hydroxy-3-methylglutaryl-CoA reductase inhibition.
    Cerda SR; Wilkinson J; Branch SK; Broitman SA
    Lipids; 1999 Jun; 34(6):605-15. PubMed ID: 10405975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flexibility of zonation of fatty acid oxidation in rat liver.
    Guzmán M; Bijleveld C; Geelen MJ
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):853-60. PubMed ID: 7487941
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasma mevalonate as a measure of cholesterol synthesis in man.
    Parker TS; McNamara DJ; Brown CD; Kolb R; Ahrens EH; Alberts AW; Tobert J; Chen J; De Schepper PJ
    J Clin Invest; 1984 Sep; 74(3):795-804. PubMed ID: 6565710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Down-regulation of cholesterol biosynthesis in sitosterolemia: diminished activities of acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl-CoA synthase, reductase, squalene synthase, and 7-dehydrocholesterol delta7-reductase in liver and mononuclear leukocytes.
    Honda A; Salen G; Nguyen LB; Tint GS; Batta AK; Shefer S
    J Lipid Res; 1998 Jan; 39(1):44-50. PubMed ID: 9469584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endogenous sterol synthesis is not required for regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein.
    Burki E; Logel J; Sinensky M
    J Lipid Res; 1987 Oct; 28(10):1199-205. PubMed ID: 3681144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of defective sterol synthesis in human leukocytes.
    Burns CP; Welshman IR; Scallen TJ; Spector AA
    Biochim Biophys Acta; 1982 Dec; 713(3):519-28. PubMed ID: 7150625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ethanol administration and the relationship of malonyl-coenzyme A concentrations to the rate of fatty acid synthesis in rat liver.
    Guynn RW; Veloso D; Harris RL; Lawson JW; Veech RL
    Biochem J; 1973 Nov; 136(3):639-47. PubMed ID: 4149946
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hepatic and intestinal formation of polar sterols in vivo in animals fed on a cholesterol-supplemented diet.
    Marco de la Calle C; Gibbons GF
    Biochem J; 1988 Jun; 252(2):395-9. PubMed ID: 3415662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diurnal changes in the rate of cholesterogenesis in hepatocytes from fed and starved rats: effects of precursors and pancreatic hormones in vitro.
    Björnsson OG; Pullinger CR; Gibbons GF
    Arch Biochem Biophys; 1985 Apr; 238(1):135-45. PubMed ID: 3885855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of dietary nutrients on substrate and effector levels of lipogenic enzymes, and lipogenesis from tritiated water in rat liver.
    Katsurada A; Fukuda H; Iritani N
    Biochim Biophys Acta; 1986 Sep; 878(2):200-8. PubMed ID: 2875738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence that changes in hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity are required partly to maintain a constant rate of sterol synthesis.
    Gibbons GF; Björnsson OG; Pullinger CR
    J Biol Chem; 1984 Dec; 259(23):14399-405. PubMed ID: 6389548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.
    Liu D; Xiao Y; Evans BS; Zhang F
    ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    Correll CC; Ng L; Edwards PA
    J Biol Chem; 1994 Jul; 269(26):17390-3. PubMed ID: 8021239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gonadotropin modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in desensitized luteinized rat ovary.
    Azhar S; Chen YD; Reaven GM
    Biochemistry; 1984 Sep; 23(20):4533-8. PubMed ID: 6437439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal responsiveness of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase and acetyl-coenzyme-A carboxylase in neoplastic guinea pig lymphocytes (L2C).
    Philippot JR; Wallach DF
    Eur J Biochem; 1979 Jun; 96(3):447-52. PubMed ID: 38110
    [No Abstract]   [Full Text] [Related]  

  • 58. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevalonate.
    Straka MS; Panini SR
    Arch Biochem Biophys; 1995 Feb; 317(1):235-43. PubMed ID: 7872789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variations of hepatic cholesterol precursors during altered flows of endogenous and exogenous squalene in the rat.
    Strandberg TE; Tilvis RS; Miettinen TA
    Biochim Biophys Acta; 1989 Feb; 1001(2):150-6. PubMed ID: 2917138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An investigation into the role of malonyl-coenzyme A in isoprenoid biosynthesis.
    Higgins MJ; Kekwick RG
    Biochem J; 1973 May; 134(1):295-310. PubMed ID: 4579226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 83.