BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6114751)

  • 1. Effect of glycogenolytic agents on glycogen synthase activity in polymorphonuclear leukocytes. Evidence for a Ca2+-mediated regulation of glycogen synthase activity.
    Juhl H; Borregaard N
    Biochim Biophys Acta; 1981 Jun; 675(1):101-9. PubMed ID: 6114751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the glycogenolytic cascade in human polymorphonuclear leucocytes by different phagocytic stimuli.
    Borregaard N; Juhl H
    Eur J Clin Invest; 1981 Aug; 11(4):257-63. PubMed ID: 6271556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of calcium and cyclic adenosine 3',5'-monophosphate in the regulation of glycogen metabolism in phagocytozing human polymorphonuclear leukocytes.
    Herlin T; Petersen CS; Esmann V
    Biochim Biophys Acta; 1978 Aug; 542(1):63-76. PubMed ID: 208651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of metabolites and phosphorylase on the D to I conversion of glycogen synthase from human polymorphonuclear leukocytes.
    Wang P; Bantle G; Sorensen NB
    Biochim Biophys Acta; 1977 Feb; 496(2):436-47. PubMed ID: 189843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of catecholamines and glucagon on glycogen metabolism in human polymorphonuclear leukocytes.
    Petersen CS; Herlin T; Esmann V
    Biochim Biophys Acta; 1978 Aug; 542(1):77-87. PubMed ID: 27235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the specific cAMP antagonist, (Rp)-adenosine cyclic 3',5'-phosphorothioate, on the cAMP-dependent protein kinase-induced activity of hepatic glycogen phosphorylase and glycogen synthase.
    Rothermel JD; Perillo NL; Marks JS; Botelho LH
    J Biol Chem; 1984 Dec; 259(24):15294-300. PubMed ID: 6096366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of glycogen synthase I from human polymorphonuclear leukocytes.
    Juhl H
    Mol Cell Biochem; 1981 Mar; 35(2):77-92. PubMed ID: 6262629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of platelet glycogenolysis; Activation of phosphorylase kinase by calcium.
    Gear AR; Schneider W
    Biochim Biophys Acta; 1975 May; 392(1):111-20. PubMed ID: 164952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers.
    François J; Villanueva ME; Hers HG
    Eur J Biochem; 1988 Jun; 174(3):551-9. PubMed ID: 2839334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonally specific expression of cardiac protein kinase activity.
    Hayes JS; Brunton LL; Brown JH; Reese JB; Mayer SE
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1570-4. PubMed ID: 221898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered liver glycogen metabolism in fed genetically obese mice.
    van de Werve G; Assimacopoulos-Jeannet F; Jeanrenaud B
    Biochem J; 1983 Nov; 216(2):273-80. PubMed ID: 6318732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphorylation of rabbit skeletal muscle glycogen synthase by glycogen synthase kinase-2 and adenosine-3':5'-monophosphate-dependent protein kinase.
    Nimmo HG; Proud CG; Cohen P
    Eur J Biochem; 1976 Sep; 68(1):31-44. PubMed ID: 183955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase.
    Keppens S; Vandenheede JR; De Wulf H
    Biochim Biophys Acta; 1977 Feb; 496(2):448-57. PubMed ID: 189844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP-dependent and cyclic AMP-independent antagonism of insulin activation of cardiac glycogen synthase.
    Ramachandran C; Angelos KL; Walsh DA
    J Biol Chem; 1982 Feb; 257(3):1448-57. PubMed ID: 6276386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of hepatic glycogen synthase inactivation induced by Ca2+-mobilizing hormones. Studies using phospholipase C and phorbol myristate acetate.
    Blackmore PF; Strickland WG; Bocckino SB; Exton JH
    Biochem J; 1986 Jul; 237(1):235-42. PubMed ID: 3099747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of calcium-activated, cyclic nucleotide-independent protein kinase and adenosine 3':5'-monophosphate-dependent protein kinase as regards the ability to stimulate glycogen breakdown in vitro.
    Kishimoto A; Mori T; Takai Y; Nishizuka Y
    J Biochem; 1978 Jul; 84(1):47-53. PubMed ID: 211121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal regulation of glycogen synthase and phosphorylase activities in human polymorphonuclear leukocytes.
    Ohtsuka Y; Kondo T; Kawakami Y
    J Clin Chem Clin Biochem; 1988 Nov; 26(11):679-84. PubMed ID: 3148680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of platelet phosphorylase.
    Chaiken R; Pagano D; Detwiler TC
    Biochim Biophys Acta; 1975 Oct; 403(2):315-25. PubMed ID: 170968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and inactivation of glycogen synthase by phosphorylase kinase.
    Soderling TR; Srivastava AK; Bass MA; Khatra BS
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2536-40. PubMed ID: 223147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylase kinase from human polymorphonuclear leukocytes.
    Sørensen NB
    Biochim Biophys Acta; 1979 May; 568(1):215-23. PubMed ID: 444542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.