These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6115026)

  • 21. pH-sensitive micelles self-assembled from polymer brush (PAE-
    Huang X; Liao W; Zhang G; Kang S; Zhang CY
    Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Percolative transport and cluster diffusion near and below the percolation threshold of a porous polymeric matrix.
    Hastedt JE; Wright JL
    Pharm Res; 2006 Oct; 23(10):2427-40. PubMed ID: 16933096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new model of resorbable device degradation and drug release: transient 1-dimension diffusional model.
    Perale G; Arosio P; Moscatelli D; Barri V; Müller M; Maccagnan S; Masi M
    J Control Release; 2009 Jun; 136(3):196-205. PubMed ID: 19250952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide.
    Han U; Seo Y; Hong J
    Sci Rep; 2016 Apr; 6():24158. PubMed ID: 27052827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of tablets for the delayed and complete release of poorly water-soluble weak base drugs using SBE7M-β-CD as a solubilizing agent.
    Rao VM; Zannou EA; Stella VJ
    J Pharm Sci; 2011 Apr; 100(4):1576-87. PubMed ID: 24081477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer.
    Kim DH; Seo YK; Thambi T; Moon GJ; Son JP; Li G; Park JH; Lee JH; Kim HH; Lee DS; Bang OY
    Biomaterials; 2015 Aug; 61():115-25. PubMed ID: 26001076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A common profile for polymer-based controlled releases and its logical interpretation to general release process.
    Li S; Shen Y; Li W; Hao X
    J Pharm Pharm Sci; 2006; 9(2):238-44. PubMed ID: 16959193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical and chemical factors influencing the release of drugs from acrylic resin films.
    Jenquin MR; Liebowitz SM; Sarabia RE; McGinity JW
    J Pharm Sci; 1990 Sep; 79(9):811-6. PubMed ID: 2273466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Testing of drug release from film pellets with special consideration of the thickness of the polymer coating].
    Voigt R; Wunsch G
    Pharmazie; 1986 Feb; 41(2):114-7. PubMed ID: 3725849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of membrane-solvent-solute interactions on solute permeation in model membranes.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 May; 336(1):108-14. PubMed ID: 17204382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.
    Kulinowski P; Dorozyński P; Jachowicz R; Weglarz WP
    J Pharm Biomed Anal; 2008 Nov; 48(3):685-93. PubMed ID: 18715732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel mathematical model considering change of diffusion coefficient for predicting dissolution behavior of acetaminophen from wax matrix dosage form.
    Nitanai Y; Agata Y; Iwao Y; Itai S
    Int J Pharm; 2012 May; 428(1-2):82-90. PubMed ID: 22405986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically erodible polymer gel for controlled release of drugs.
    Kwon IC; Bae YH; Kim SW
    Nature; 1991 Nov; 354(6351):291-3. PubMed ID: 1956379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion.
    Pimenta AFR; Ascenso J; Fernandes JCS; Colaço R; Serro AP; Saramago B
    Int J Pharm; 2016 Dec; 515(1-2):467-475. PubMed ID: 27789366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liposomal delivery of hydrophobic weak acids: enhancement of drug retention using a high intraliposomal pH.
    Joguparthi V; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):433-54. PubMed ID: 17918731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progestin permeation through polymer membranes II: diffusion studies on hydrogel membranes.
    Zentner GM; Cardinal JR; Kim SW
    J Pharm Sci; 1978 Oct; 67(10):1352-5. PubMed ID: 702277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release.
    Xu M; Zhang CY; Wu J; Zhou H; Bai R; Shen Z; Deng F; Liu Y; Liu J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5701-5713. PubMed ID: 30644711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fiber distribution model for predicting drug release rates.
    Petlin DG; Amarah AA; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Jul; 258():218-225. PubMed ID: 28526437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Donnan equilibrium of ionic drugs in pH-dependent fixed charge membranes: theoretical modeling.
    Ramírez P; Alcaraz A; Mafé S; Pellicer J
    J Colloid Interface Sci; 2002 Sep; 253(1):171-9. PubMed ID: 16290843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.