These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6115615)

  • 1. Metabolism of acetaldehyde and custers effect in the yeast.
    Carrascosa JM; Viguera MD; Núñez de Castro I; Scheffers WA
    Antonie Van Leeuwenhoek; 1981; 47(3):209-15. PubMed ID: 6115615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect).
    Wijsman MR; van Dijken JP; van Kleeff BH; Scheffers WA
    Antonie Van Leeuwenhoek; 1984; 50(2):183-92. PubMed ID: 6431904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans.
    Marttila E; Bowyer P; Sanglard D; Uittamo J; Kaihovaara P; Salaspuro M; Richardson M; Rautemaa R
    Mol Oral Microbiol; 2013 Aug; 28(4):281-91. PubMed ID: 23445445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases.
    Llorente N; de Castro IN
    Rev Esp Fisiol; 1977 Jun; 33(2):135-42. PubMed ID: 17891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.
    Zhu H; Gonzalez R; Bobik TA
    Appl Environ Microbiol; 2011 Sep; 77(18):6441-50. PubMed ID: 21803884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of acetylene by Nocardia rhodochrous.
    Kanner D; Bartha R
    J Bacteriol; 1982 May; 150(2):989-92. PubMed ID: 6121789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation.
    Saint-Prix F; Bönquist L; Dequin S
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2209-2220. PubMed ID: 15256563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Regulation of acetate metabolism in a strain of Acinetobacter sp., growing on ethanol].
    Pirog TP; Kuz'minskaia IuV
    Prikl Biokhim Mikrobiol; 2003; 39(2):180-8. PubMed ID: 12722651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetaldehyde: an intermediate in the formation of ethanol from glucose by lactic acid bacteria.
    Lees GJ
    J Dairy Res; 1976 Feb; 43(1):63-73. PubMed ID: 177470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia.
    Sánchez LB
    Arch Biochem Biophys; 1998 Jun; 354(1):57-64. PubMed ID: 9633598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway.
    Bertsch J; Siemund AL; Kremp F; Müller V
    Environ Microbiol; 2016 Sep; 18(9):2913-22. PubMed ID: 26472176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2005; 99(1):112-25. PubMed ID: 15960671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.
    Burdette D; Zeikus JG
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):163-70. PubMed ID: 8068002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture.
    Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures.
    Verduyn C; Postma E; Scheffers WA; van Dijken JP
    J Gen Microbiol; 1990 Mar; 136(3):395-403. PubMed ID: 1975265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.
    Thielen J; Ciriacy M
    J Bacteriol; 1991 Nov; 173(21):7012-7. PubMed ID: 1938903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.