These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 6116214)
1. Decrease in choline acetyltransferase and in high affinity glutamate uptake in the red nucleus of the cat after cerebellar lesions. Nieoullon A; Dusticier N Neurosci Lett; 1981 Jul; 24(3):267-71. PubMed ID: 6116214 [TBL] [Abstract][Full Text] [Related]
2. High affinity glutamate uptake in the red nucleus and ventrolateral thalamus after lesion of the cerebellum in the adult cat: biochemical evidence for functional changes in the deafferented structures. Nieoullon A; Kerkerian L; Dusticier N Exp Brain Res; 1984; 55(3):409-19. PubMed ID: 6147261 [TBL] [Abstract][Full Text] [Related]
3. Glutamate uptake, glutamate decarboxylase and choline acetyltransferase in subcortical areas after sensorimotor cortical ablations in the cat. Nieoullon A; Dusticier N Brain Res Bull; 1983 Mar; 10(3):287-93. PubMed ID: 6133598 [TBL] [Abstract][Full Text] [Related]
4. Decrease in choline acetyltransferase activity in the red nucleus of the cat after cerebellar lesion. Nieoullon A; Dusticier N Neuroscience; 1981; 6(8):1633-41. PubMed ID: 6267510 [No Abstract] [Full Text] [Related]
5. Neuronal plasticity in the red nucleus and the ventrolateral thalamus of the adult cat: a biochemical approach. Nieoullon A Adv Neurol; 1984; 40():107-16. PubMed ID: 6141709 [No Abstract] [Full Text] [Related]
6. Decreased glutamate uptake in subcortical areas deafferented by sensorimotor cortical ablation in the cat. Young AB; Bromberg MB; Penney JB J Neurosci; 1981 Mar; 1(3):241-9. PubMed ID: 6114994 [TBL] [Abstract][Full Text] [Related]
7. Choline acetyltransferase immunoreactivity in the cat cerebellum. Ikeda M; Houtani T; Ueyama T; Sugimoto T Neuroscience; 1991; 45(3):671-90. PubMed ID: 1775241 [TBL] [Abstract][Full Text] [Related]
8. Evidence for reactive synaptogenesis in the ventrolateral thalamus and red nucleus of the rat: changes in high affinity glutamate uptake and numbers of corticofugal fiber terminals. Bromberg MB; Pamel G; Stephenson BS; Young AB; Penney JB Exp Brain Res; 1987; 69(1):53-9. PubMed ID: 2893742 [TBL] [Abstract][Full Text] [Related]
9. GABA neurons in the cat red nucleus: a biochemical and immunohistochemical demonstration. Vuillon-Cacciuttolo G; Bosler O; Nieoullon A Neurosci Lett; 1984 Nov; 52(1-2):129-34. PubMed ID: 6098872 [TBL] [Abstract][Full Text] [Related]
10. Increased glutamate decarboxylase activity in the red nucleus of the adult cat after cerebellar lesions. Nieoullon A; Dusticier N Brain Res; 1981 Nov; 224(1):129-39. PubMed ID: 7284827 [TBL] [Abstract][Full Text] [Related]
11. Is there a reciprocal connection between the red nucleus and the interposed cerebellar nuclei? Conclusions based on observations of anterograde and retrograde transport of peroxidase-labelled lectin in the same animal. Walberg F; Dietrichs E Brain Res; 1986 Nov; 397(1):73-85. PubMed ID: 2432990 [TBL] [Abstract][Full Text] [Related]
12. Possible neurotransmitters of the dorsal column afferents: effects of dorsal column transection in the cat. Kojima N; Kanazawa I Neuroscience; 1987 Oct; 23(1):263-74. PubMed ID: 2446204 [TBL] [Abstract][Full Text] [Related]
13. Choline acetyltransferase activity in discrete regions of the cat brain. Nieoullon A; Dusticier N Brain Res; 1980 Aug; 196(1):139-49. PubMed ID: 7397518 [TBL] [Abstract][Full Text] [Related]
14. Topographic changes in high-affinity glutamate uptake in the cat red nucleus, substantia nigra, thalamus, and caudate nucleus after lesions of sensorimotor cortical areas. Kerkerian L; Nieoullon A; Dusticier N Exp Neurol; 1983 Sep; 81(3):598-612. PubMed ID: 6884471 [TBL] [Abstract][Full Text] [Related]
15. Choline acetyltransferase and glutamate uptake in the nucleus tractus solitarius and dorsal motor nucleus of the vagus: effect of nodose ganglionectomy. Simon JR; Dimicco SK; Dimicco JA; Aprison MH Brain Res; 1985 Oct; 344(2):405-8. PubMed ID: 2864111 [TBL] [Abstract][Full Text] [Related]
16. Topographic specificity of aberrant cerebellorubral projections following neonatal hemicerebellectomy in the rat. Naus CG; Flumerfelt BA; Hrycyshyn AW Brain Res; 1984 Aug; 309(1):1-15. PubMed ID: 6207888 [TBL] [Abstract][Full Text] [Related]
17. Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons. Nieoullon A; Scarfone E; Kerkerian L; Errami M; Dusticier N Neurosci Lett; 1985 Aug; 58(3):299-304. PubMed ID: 2864669 [TBL] [Abstract][Full Text] [Related]
18. Further evidence for cholinergic habenulo-interpeduncular neurons: pharmacologic and functional characteristics. Kuhar MJ; DeHaven RN; Yamamura HI; Rommel-Spacher H; Simon JR Brain Res; 1975 Oct; 97(2):265-75. PubMed ID: 1175046 [TBL] [Abstract][Full Text] [Related]
19. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. Barmack NH; Baughman RW; Eckenstein FP J Comp Neurol; 1992 Mar; 317(3):233-49. PubMed ID: 1577998 [TBL] [Abstract][Full Text] [Related]
20. Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum. Keifer J; Houk JC J Neurophysiol; 1991 Mar; 65(3):454-67. PubMed ID: 1675669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]