These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 6116669)

  • 1. Larval susceptibility of Culex pipiens fatigans and Anopheles stephensi to Metarrhizum anisopliae.
    Balaraman K; Jambulingam P; Rajagopalan PK
    Indian J Med Res; 1981 Jan; 73 Suppl():160-2. PubMed ID: 6116669
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of Metarrhizium anisopliae, Beauveria tenella and Fusarium oxysporum (Deuteromycetes) and their pathogenicity to Culex fatigans and Anopheles stephensi.
    Balaraman K; Rao US; Rajagopalan PK
    Indian J Med Res; 1979 Nov; 70():718-22. PubMed ID: 535971
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae.
    Riba G; Keita A; Soares GG; Ferron P
    J Am Mosq Control Assoc; 1986 Dec; 2(4):469-73. PubMed ID: 2906985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae.
    Singh RK; Dhiman RC; Singh SP
    J Commun Dis; 2003 Jun; 35(2):96-101. PubMed ID: 15562955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae.
    Singh RK; Mittal PK; Dhiman RC
    J Commun Dis; 2005 Jun; 37(2):109-13. PubMed ID: 16749273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory evaluation of Trichophyton ajelloi, a fungal pathogen of Anopheles stephensi and Culex quinquefasciatus.
    Mohanty SS; Prakash S
    J Am Mosq Control Assoc; 2000 Sep; 16(3):254-7. PubMed ID: 11081656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101), to control breeding of Anopheles stephensi and Culex quinquefasciatus.
    Mittal PK; Adak T; Batra CP; Sharma VP
    Indian J Malariol; 1993 Jun; 30(2):81-9. PubMed ID: 8405598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae).
    Govindarajan M
    Eur Rev Med Pharmacol Sci; 2010 Feb; 14(2):107-11. PubMed ID: 20329569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological control of mosquito larvae.
    Chapman HC
    Annu Rev Entomol; 1974; 19():33-59. PubMed ID: 4205688
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae).
    Vatandoost H; Sanei Dehkordi A; Sadeghi SM; Davari B; Karimian F; Abai MR; Sedaghat MM
    Exp Parasitol; 2012 Dec; 132(4):470-4. PubMed ID: 23022522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characteristics of Bacillus thuringiensis var. israelensis and its effect on mosquito larvae (Diptera: Culicidae)].
    Müller P
    Angew Parasitol; 1984 Aug; 25(3):157-63. PubMed ID: 6149708
    [No Abstract]   [Full Text] [Related]  

  • 13. Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus.
    Madhumathy AP; Aivazi AA; Vijayan VA
    J Vector Borne Dis; 2007 Sep; 44(3):223-6. PubMed ID: 17896626
    [No Abstract]   [Full Text] [Related]  

  • 14. Efficacy of Aphanius dispar (Rüppell) an indigenous larvivorous fish for vector control in domestic tanks under the Sardar Sarovar Narmada project command area in District Kheda, Gujarat.
    Haq S; Srivastava HC
    J Vector Borne Dis; 2013; 50(2):137-40. PubMed ID: 23995316
    [No Abstract]   [Full Text] [Related]  

  • 15. Integration of larvivorous fish and temephos for the control of Culex tritaeniorhynchus breeding.
    Mathur KK; Rahman SJ; Wattal BL
    J Commun Dis; 1981 Mar; 13(1):58-63. PubMed ID: 6172460
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of entomopathogenic fungus, Beauveria bassiana on larvae of three species of mosquitoes.
    Geetha I; Balaraman K
    Indian J Exp Biol; 1999 Nov; 37(11):1148-50. PubMed ID: 10783749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larvicidal activity of the entomopathogenic fungus Tolypocladium cylindrosporum (Deuteromycotina: Hyphomycetes) on the mosquito Aedes triseriatus and the black fly Simulium vittatum (Diptera: Simuliidae).
    Nadeau MP; Boisvert JL
    J Am Mosq Control Assoc; 1994 Dec; 10(4):487-91. PubMed ID: 7707051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory and field evaluation of two formulations of Bacillus thuringiensis M-H-14 against mosquito larvae in the Islamic Republic of Iran, 2012.
    Gezelbash Z; Vatandoost H; Abai MR; Raeisi A; Rassi Y; Hanafi-Bojd AA; Jabbari H; Nikpoor F
    East Mediterr Health J; 2014 May; 20(4):229-35. PubMed ID: 24952119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of methoprene (a juvenile hormone) against Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti.
    Das PK; Mariappan T; Rajagopalan PK
    Indian J Med Res; 1981 Jul; 74():18-22. PubMed ID: 7309181
    [No Abstract]   [Full Text] [Related]  

  • 20. Laboratory study on the mosquito larvicidal properties of leaf and seed extract of the plant Agave americana.
    Dharmshaktu NS; Prabhakaran PK; Menon PK
    J Trop Med Hyg; 1987 Apr; 90(2):79-82. PubMed ID: 2882030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.