These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 6116669)

  • 21. Efficacy of Clostridium bifermentans serovar Malaysia on target and nontarget organisms.
    Yiallouros M; Storch V; Thiery I; Becker N
    J Am Mosq Control Assoc; 1994 Mar; 10(1):51-5. PubMed ID: 7912261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti.
    Kaushik R; Saini P
    J Vector Borne Dis; 2008 Mar; 45(1):66-9. PubMed ID: 18399320
    [No Abstract]   [Full Text] [Related]  

  • 23. Larval susceptibility of Ajuga remota against anopheline and culicine mosquitos.
    Sharma P; Mohan L; Srivastava CN
    Southeast Asian J Trop Med Public Health; 2004 Sep; 35(3):608-10. PubMed ID: 15689074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Bactimos briquets (B.t.i. formulation) combined with the backswimmer Notonecta irrorata (Hemiptera:Notonectidae) for control of mosquito larvae.
    Neri-Barbosa JF; Quiroz-Martinez H; Rodriguez-Tovar ML; Tejada LO; Badii MH
    J Am Mosq Control Assoc; 1997 Mar; 13(1):87-9. PubMed ID: 9152881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae).
    Shahi M; Hanafi-Bojd AA; Iranshahi M; Vatandoost H; Hanafi-Bojd MY
    J Vector Borne Dis; 2010 Sep; 47(3):185-8. PubMed ID: 20834091
    [No Abstract]   [Full Text] [Related]  

  • 26. Variation of larval susceptibility to Lagenidium giganteum in three mosquito species.
    Golkar L; LeBrun RA; Ohayon H; Gounon P; Papierok B; Brey PT
    J Invertebr Pathol; 1993 Jul; 62(1):1-8. PubMed ID: 8104999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of Culex pipiens fatigans(W) by the larvivorous fish Poecillia reticulata and by removal of debris from the breeding habitat.
    Phan-Urai P; Nelson MJ; Phanthumachinda B
    Southeast Asian J Trop Med Public Health; 1976 Mar; (1):56-50. PubMed ID: 1027109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observations on the use of Gambusia affinis Holbrooki to control A. stephensi breeding in wells. Results of two years' study in Greater Hyderabad City--India.
    Sitaraman NL; Karim MA; Reddy GV
    Indian J Med Res; 1975 Oct; 63(10):1509-16. PubMed ID: 1222962
    [No Abstract]   [Full Text] [Related]  

  • 29. Laboratory evaluation of the biocontrol potential of Aphyosemion gularis against Anopheles larvae.
    Okorie A; Abiodun O
    J Vector Borne Dis; 2010 Sep; 47(3):181-4. PubMed ID: 20834090
    [No Abstract]   [Full Text] [Related]  

  • 30. Insecticide susceptibility status of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti in Panaji, Goa.
    Thavaselvam D; Kumar A; Sumodan PK
    Indian J Malariol; 1993 Jun; 30(2):75-9. PubMed ID: 8405597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospects for biological control of mosquitoes.
    Rajagopalan PK
    Indian J Med Res; 1981 Jan; 73():163-73. PubMed ID: 6116666
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolites of fungi & actinomycetes active against mosquito larvae.
    Vijayan V; Balaraman K
    Indian J Med Res; 1991 Mar; 93():115-7. PubMed ID: 1677347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Combined infections in the pathology of larvae of blood-sucking mosquitoes. 1. Entomopathogenic qualities of bacterial complexes].
    Mikhnovskaia ND; Povazhnaia TN; Ianishevskaia GS; Kostiuchenko IP; Levchenko EE
    Med Parazitol (Mosk); 1987; (1):13-7. PubMed ID: 2883561
    [No Abstract]   [Full Text] [Related]  

  • 34. The susceptibility of fourth-stage larvae of Anopheles gambiae, Aedes aegypti and Culex pipiens fatigans to some phosphoric acid esters.
    WEBBE G
    Ann Trop Med Parasitol; 1960 Dec; 54():471-4. PubMed ID: 13783589
    [No Abstract]   [Full Text] [Related]  

  • 35. [Prospects of improving microbial larvicides and methods of control of blood sucking insects and disease vectors].
    Alekseev AN
    Med Parazitol (Mosk); 1987; (1):3-8. PubMed ID: 2883565
    [No Abstract]   [Full Text] [Related]  

  • 36. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan.
    Teng HJ; Lu LC; Wu YL; Fang JG
    J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operational studies with Valent VectoLex WDG, Bacillus sphaericus, in three Florida Mosquito Control Districts.
    Floore T; Rolen K; Medrano G; Jones F
    J Am Mosq Control Assoc; 2002 Dec; 18(4):344-7. PubMed ID: 12542192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mosquito control by plankton management: the potential of indigestible green algae.
    Marten GG
    J Trop Med Hyg; 1986 Oct; 89(5):213-22. PubMed ID: 2879045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.
    Walker K; Lynch M
    Med Vet Entomol; 2007 Mar; 21(1):2-21. PubMed ID: 17373942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn.
    Raghavendra K; Singh SP; Subbarao SK; Dash AP
    Indian J Med Res; 2009 Jul; 130(1):74-7. PubMed ID: 19700805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.