These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 6117446)
1. Stoichiometry of aminopyrine demethylation with and without NADH synergism. Jansson I; Schenkman JB Drug Metab Dispos; 1981; 9(5):461-5. PubMed ID: 6117446 [TBL] [Abstract][Full Text] [Related]
2. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
3. [The role of pyridine nucleotide cofactors in the reaction of microsomal N-demethylation under normal conditions and in tumor pathology]. Komov VP; Firsova VI; Vennikas OR; Sinakevich NV Vopr Med Khim; 1985; 31(6):132-5. PubMed ID: 4090379 [TBL] [Abstract][Full Text] [Related]
4. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes. Rao DN; Yang MX; Lasker JM; Cederbaum AI Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631 [TBL] [Abstract][Full Text] [Related]
5. Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P-450. Jansson I; Schenkman JB Drug Metab Dispos; 1987; 15(3):344-8. PubMed ID: 2886309 [TBL] [Abstract][Full Text] [Related]
6. Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P-450-catalyzed reactions. Gorsky LD; Coon MJ Drug Metab Dispos; 1986; 14(1):89-96. PubMed ID: 2868871 [TBL] [Abstract][Full Text] [Related]
7. [Effect of nicotinic acid and nicotinamide on the activity of NADPH- and NADH-dependent redox chains in rat liver endoplasmic reticulum]. Lukienko PI; Bushma MI Farmakol Toksikol; 1982; 45(2):78-81. PubMed ID: 6210571 [TBL] [Abstract][Full Text] [Related]
8. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation. Miura A; Tampo Y; Yonaha M Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076 [TBL] [Abstract][Full Text] [Related]
9. [Interaction of methylmethacrylate and acrylamide with the microsomal oxidation system of the rat liver]. Kotlovskiĭ IuV; Grishanova AIu; Ivanov VV Vopr Med Khim; 1984; 30(5):44-7. PubMed ID: 6442037 [TBL] [Abstract][Full Text] [Related]
10. The role of cytochrome b5 in mixed function oxidations: effect of microsomal binding of the hemoprotein on hepatic N-demethylations. Cinti DL; Ozols J Adv Exp Med Biol; 1975; 58(00):467-83. PubMed ID: 168751 [TBL] [Abstract][Full Text] [Related]
11. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Cederbaum AI Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274 [TBL] [Abstract][Full Text] [Related]
12. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450. Correia MA; Mannering GJ Mol Pharmacol; 1973 Jul; 9(4):470-85. PubMed ID: 4146890 [No Abstract] [Full Text] [Related]
13. Caffeine demethylase activity in human and Dark Agouti rat liver microsomes. Comparison with aminopyrine N-demethylase activity. Agúndez JA; Luengo A; Benítez J Drug Metab Dispos; 1992; 20(3):343-9. PubMed ID: 1521502 [TBL] [Abstract][Full Text] [Related]
14. Characterization of cytochrome P-450-dependent aminopyrine N-demethylase in rat brain: comparison with hepatic aminopyrine N-demethylation. Marietta MP; Vesell ES; Hartman RD; Weisz J; Dvorchik BH J Pharmacol Exp Ther; 1979 Feb; 208(2):271-9. PubMed ID: 33263 [No Abstract] [Full Text] [Related]
15. Evidence against participation of cytochrome b5 in the hepatic microsomal mixed-function oxidase reaction. Jansson I; Schenkman JB Mol Pharmacol; 1973 Nov; 9(6):840-5. PubMed ID: 4148656 [No Abstract] [Full Text] [Related]
16. [Stoichiometry of microsomal oxidation reactions. Distribution of redox-equivalents in monooxygenase and oxidase reactions catalyzed by cytochrome P-450]. Zhukov AA; Archakov AI Biokhimiia; 1985 Dec; 50(12):1939-52. PubMed ID: 4074780 [TBL] [Abstract][Full Text] [Related]
17. Contrasting effect of isoflurane on drug metabolism: decreased type I and increased type II substrate metabolism in guinea pig liver microsomes. Rahman MM; Fujii K; Kawamoto M; Yuge O J Appl Toxicol; 1996; 16(4):331-7. PubMed ID: 8854220 [TBL] [Abstract][Full Text] [Related]
18. [Effect of incorporation and removal of cholesterol on the lipid bilayer viscosity and the rate of oxidative reactions in rat liver microsomal membranes]. Borodin EA; Dobretsov GE; Karasevich EI; Karuzina II; Kariakin AV Biokhimiia; 1981 Jun; 46(6):1109-18. PubMed ID: 7260196 [TBL] [Abstract][Full Text] [Related]
19. Relationship between NADH and NADPH oxidation during drug metabolism. Sasame HA; Mitchell JR; Thorgeirsson S; Gillette JR Drug Metab Dispos; 1973; 1(1):150-5. PubMed ID: 4129866 [No Abstract] [Full Text] [Related]
20. The involvement of cytochrome P-488 and P-450 in NADH-dependent O-demethylation of p-nitroanisole in rat liver microsomes. Kamataki T; Kitada M; Shigematsu H; Kitagawa H Jpn J Pharmacol; 1979 Apr; 29(2):191-201. PubMed ID: 43909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]