These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 6117446)
21. Role of cytochrome b5 in the NADH synergism of NADPH-dependent reactions of the cytochrome P-450 monooxygenase system of hepatic microsomes. Mannerign GJ Adv Exp Med Biol; 1975; 58(00):405-34. PubMed ID: 239543 [No Abstract] [Full Text] [Related]
22. Pyridine nucleotide involvement in rat hepatic drug metabolism. The influence of NADH on the NADPH kinetics of phenobarbital pre-treated rat microsomes. Penglis S; Gourlay GK; Stock BH Aust J Exp Biol Med Sci; 1980 Feb; 58(1):49-60. PubMed ID: 6778467 [TBL] [Abstract][Full Text] [Related]
23. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases. Schepetkin IA Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909 [TBL] [Abstract][Full Text] [Related]
24. Pyridine nucleotide involvement in rat hepatic microsomal drug metabolism--III. The influence of the 1,4,5,6-tetrahydronicotinamide analogue of NADP on the NADPH kinetics of aminopyrine-N-demethylation. Gourlay GK; Stock BH Biochem Pharmacol; 1978 Mar; 27(6):979-83. PubMed ID: 26356 [No Abstract] [Full Text] [Related]
25. The influence of NADH on the ethylmorphine-N-demethylation in liver microsomes from control and phenobarbital-treated rats or different ages. Müller D; Klinger W Acta Biol Med Ger; 1977; 36(7-8):1161-6. PubMed ID: 25549 [TBL] [Abstract][Full Text] [Related]
26. Effect of 2-mercaptopropionylglycine on lipid peroxidation and drug oxidation in rat liver microsomes. Harata J; Nagata M; Ishiguro I; Ohta Y Biochem Int; 1984 Jan; 8(1):49-59. PubMed ID: 6477598 [TBL] [Abstract][Full Text] [Related]
27. Baculovirus expression of human P450 2E1 and cytochrome b5: spectral and catalytic properties and effect of b5 on the stoichiometry of P450 2E1-catalyzed reactions. Patten CJ; Koch P Arch Biochem Biophys; 1995 Mar; 317(2):504-13. PubMed ID: 7893169 [TBL] [Abstract][Full Text] [Related]
28. Explanation of the stimulation of microsomal N-demethylation reactions by soluble supernatant fraction. Cinti DL Res Commun Chem Pathol Pharmacol; 1975 Oct; 12(2):339-54. PubMed ID: 745 [TBL] [Abstract][Full Text] [Related]
29. Studies on the cytochrome P-450-containing mono-oxygenase system in human kidney cortex microsomes. Jakobsson SV; Cintig DL J Pharmacol Exp Ther; 1973 May; 185(2):226-34. PubMed ID: 4145045 [No Abstract] [Full Text] [Related]
30. The dependence on vitamin E and selenium of drug demethylation in rat liver microsomal fractions. Giasuddin AS; Caygill CP; Diplock AT; Jeffery EH Biochem J; 1975 Feb; 146(2):339-50. PubMed ID: 239693 [TBL] [Abstract][Full Text] [Related]
31. Role of reducing equivalents from fatty acid oxidation in mixed-function oxidation: studies with 2-bromooctanoate in the perfused rat liver. Danis M; Kauffman FC; Evans RK; Thurman RG J Pharmacol Exp Ther; 1981 Nov; 219(2):383-8. PubMed ID: 7288627 [TBL] [Abstract][Full Text] [Related]
32. [Hydroxylating activity of rat liver microsomes in the period of acute phase protein formation in radiation sickness]. Nesterova TA; Smirnova TN; Tutochkina LT Radiobiologiia; 1983; 23(5):672-5. PubMed ID: 6359247 [TBL] [Abstract][Full Text] [Related]
33. [Effect of cold stress on the concentration and activity of rat liver microsomal cytochrome [P-450]. Deev LI; Akhalaia MIa; Kudriashov IuB Biull Eksp Biol Med; 1981 Aug; 92(8):28-30. PubMed ID: 7295961 [TBL] [Abstract][Full Text] [Related]
34. Interaction between microsomal electron transfer pathways. Schenkman JB; Jansson I Adv Exp Med Biol; 1975; 58(00):387-404. PubMed ID: 239542 [No Abstract] [Full Text] [Related]
35. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system. Correia MA; Mannering GJ Mol Pharmacol; 1973 Jul; 9(4):455-69. PubMed ID: 4146889 [No Abstract] [Full Text] [Related]
36. Binding of homogeneous cytochrome b5 to rat liver microsomes. Effect on N-demethylation reactions. Cinti DL; Ozols J Biochim Biophys Acta; 1975 Nov; 410(1):32-44. PubMed ID: 1191670 [TBL] [Abstract][Full Text] [Related]
37. Microsomal electron transport reactions. I. Interaction of reduced triphosphopyridine nucleotide during the oxidative demethylation of aminopyrine and cytochrome b 5 reduction. Cohen BS; Estabrook RW Arch Biochem Biophys; 1971 Mar; 143(1):37-45. PubMed ID: 4397836 [No Abstract] [Full Text] [Related]
38. Aminopyrine demethylation kinetics. Use of metabolite exhalation rates as an index of enhanced mixed-function oxidase activity in vivo. Houston JB; Lockwood GF; Taylor G Drug Metab Dispos; 1981; 9(5):449-55. PubMed ID: 6117444 [TBL] [Abstract][Full Text] [Related]
39. [NADPH- and NADH-dependent benz(a)pyrene hydroxylating system. II. Relationship to lipid peroxidation]. Belevich NP; Dmitriev LF; Ivanov II Biull Eksp Biol Med; 1981 Feb; 91(2):158-60. PubMed ID: 7225548 [TBL] [Abstract][Full Text] [Related]
40. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase. Roma GW; Crowley LJ; Davis CA; Barber MJ Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]