These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 6117908)
1. The problem of periodic patterns in embryos. Cooke J Philos Trans R Soc Lond B Biol Sci; 1981 Oct; 295(1078):509-24. PubMed ID: 6117908 [TBL] [Abstract][Full Text] [Related]
2. [Segmentation in vertebrates: a molecular clock linked to periodic somite formation]. Palmeirim I J Soc Biol; 1999; 193(3):243-56. PubMed ID: 10542954 [TBL] [Abstract][Full Text] [Related]
3. The making of the somite: molecular events in vertebrate segmentation. Saga Y; Takeda H Nat Rev Genet; 2001 Nov; 2(11):835-45. PubMed ID: 11715039 [TBL] [Abstract][Full Text] [Related]
4. The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Hannibal RL; Price AL; Patel NH Dev Biol; 2012 Jan; 361(2):427-38. PubMed ID: 22037675 [TBL] [Abstract][Full Text] [Related]
5. A clock-work somite. Dale KJ; Pourquié O Bioessays; 2000 Jan; 22(1):72-83. PubMed ID: 10649293 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Yabe T; Takada S Dev Growth Differ; 2016 Jan; 58(1):31-42. PubMed ID: 26676827 [TBL] [Abstract][Full Text] [Related]
7. The segmentation clock: converting embryonic time into spatial pattern. Pourquié O Science; 2003 Jul; 301(5631):328-30. PubMed ID: 12869750 [TBL] [Abstract][Full Text] [Related]
8. Left-right asymmetry in animal development. Wood WB Annu Rev Cell Dev Biol; 1997; 13():53-82. PubMed ID: 9442868 [TBL] [Abstract][Full Text] [Related]
9. Distinct and dynamic myogenic populations in the vertebrate embryo. Buckingham M; Vincent SD Curr Opin Genet Dev; 2009 Oct; 19(5):444-53. PubMed ID: 19762225 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Shih NP; François P; Delaune EA; Amacher SL Development; 2015 May; 142(10):1785-93. PubMed ID: 25968314 [TBL] [Abstract][Full Text] [Related]
11. Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Yonei-Tamura S; Abe G; Tanaka Y; Anno H; Noro M; Ide H; Aono H; Kuraishi R; Osumi N; Kuratani S; Tamura K Evol Dev; 2008; 10(6):737-45. PubMed ID: 19021745 [TBL] [Abstract][Full Text] [Related]
12. Ins and outs of Spiralian gastrulation. Lyons DC; Henry JQ Int J Dev Biol; 2014; 58(6-8):413-28. PubMed ID: 25690959 [TBL] [Abstract][Full Text] [Related]
13. Vertebrate myotome development. Hollway G; Currie P Birth Defects Res C Embryo Today; 2005 Sep; 75(3):172-9. PubMed ID: 16187310 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Janssen R; Budd GE Dev Biol; 2013 Oct; 382(1):224-34. PubMed ID: 23880430 [TBL] [Abstract][Full Text] [Related]
15. Cellular oscillators in animal segmentation. Jaeger J; Goodwin BC In Silico Biol; 2002; 2(2):111-23. PubMed ID: 12066836 [TBL] [Abstract][Full Text] [Related]
16. [Positional information on limb/fin formation in vertebrates]. Yonei-Tamura S; Abe G; Tamura K Tanpakushitsu Kakusan Koso; 2005 May; 50(6 Suppl):731-7. PubMed ID: 15926507 [No Abstract] [Full Text] [Related]