These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 61182)

  • 21. Amino acid sequence of human muscle glyceraldehyde-3-phosphate dehydrogenase. Isolation and amino acid sequences of tryptic peptides.
    Nowak K; Malarska A; Ostropolska L; Kuczek M; Zowmir O; Slomińska A; Wolny M; Baranowski T
    Acta Biochim Pol; 1976; 23(2-3):127-38. PubMed ID: 987679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calf thymus alanine-rich, leucine-rich histone: sequences of the tryptic peptides and characteristic distributions of the basic and other residues in the molecule.
    Hayashi H; Iwai K
    J Biochem; 1971 Sep; 70(3):543-7. PubMed ID: 5166073
    [No Abstract]   [Full Text] [Related]  

  • 23. Limited digestion of guinea pig myelin basic protein and its carboxy-terminal fragment (residues 89-169) with Staphylococcus aureus V8 protease.
    Diebler GE; Nomura K; Kies MW
    J Neurochem; 1982 Oct; 39(4):1090-100. PubMed ID: 6181193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a thermolysin peptide containing acetyllysine from enzymatically acetylated f2a1 histone.
    Horiuchi K; Fujimoto D
    J Biochem; 1973 Jan; 73(1):117-21. PubMed ID: 4690227
    [No Abstract]   [Full Text] [Related]  

  • 25. Specific interaction of central nervous system myelin basic protein with lipids. Specific regions of the protein sequence protected from the proteolytic action of trypsin.
    London Y; Vossenberg FG
    Biochim Biophys Acta; 1973 May; 307(3):478-90. PubMed ID: 4124149
    [No Abstract]   [Full Text] [Related]  

  • 26. Proteolytic digestion studies of chromatin core-histone structure. Identification of limit peptides from histone H2B.
    Böhm L; Briand G; Sautière P; Crane-Robinson C
    Eur J Biochem; 1982 Apr; 123(2):299-303. PubMed ID: 7075590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence similarities of protein kinase peptide substrates and inhibitors: comparison of their primary structures with immunoglobulin repeats.
    Kubrycht J; Borecký J; Sigler K
    Folia Microbiol (Praha); 2002; 47(4):319-58. PubMed ID: 12422509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The complete amino acid sequence of the basic nuclear protein of bull spermatozoa.
    Coelingh JP; Monfoort CH; Rozijn TH; Leuven JA; Schiphof R; Steyn-Parvé EP; Braunitzer G; Schrank B; Ruhfus A
    Biochim Biophys Acta; 1972 Nov; 285(1):1-14. PubMed ID: 4675900
    [No Abstract]   [Full Text] [Related]  

  • 29. Experimental allergic encephalomyelitis: basic protein regions responsible for delayed hypersensitivity.
    Hashim GA; Hwang F; Schilling FJ
    Arch Biochem Biophys; 1973 May; 156(1):298-309. PubMed ID: 4125888
    [No Abstract]   [Full Text] [Related]  

  • 30. Homology and relatedness of amino acid interchanges in the variable region of kappa light chains from human immunoglobulins.
    Percy ME; Percy JR
    Can J Biochem; 1972 Oct; 50(10):1122-31. PubMed ID: 5084355
    [No Abstract]   [Full Text] [Related]  

  • 31. Protamines, histones and the genetic code. New evidence for code evaluations.
    Bauer K
    Int J Pept Protein Res; 1976; 8(1):13-9. PubMed ID: 1248921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myelin basic protein arginine methyl transferase: wide distribution among both neurogenic and non-neurogenic tissues.
    Sundarraj N; Pfeiffer SE
    Biochem Biophys Res Commun; 1973 Jun; 52(3):1039-45. PubMed ID: 4122883
    [No Abstract]   [Full Text] [Related]  

  • 33. [Heterogeneity of histones].
    Bartkowiak J; Klyszejko-Stefanowicz L
    Postepy Biochem; 1970; 16(2):263-96. PubMed ID: 5464254
    [No Abstract]   [Full Text] [Related]  

  • 34. Deviations from compositional randomness in eukaryotic and prokaryotic proteins: the hypothesis of selective-stochastic stability and a principle of charge conservation.
    Holmquist R
    J Mol Evol; 1975 Mar; 4(4):277-306. PubMed ID: 173858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allotypically related sequences in the Fd fragment of rabbit immunoglobulin heavy chains.
    Mole LE; Jackson SA; Porter RR; Wilkinson JM
    Biochem J; 1971 Sep; 124(2):301-18. PubMed ID: 5158495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid sequences of lamprey fibrinopeptides A and B and characterizations of the junctions split by lamprey and mammalian thrombins.
    Cottrell BA; Doolittle RF
    Biochim Biophys Acta; 1976 Dec; 453(2):426-38. PubMed ID: 999898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide mapping of basic proteins by proteolysis in acetic acid/urea-minislab polyacrylamide gels.
    Davie JR
    Anal Biochem; 1985 Feb; 144(2):522-6. PubMed ID: 3887981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative studies of guinea pig and bovine myelin basic proteins. Partial characterization of chemically derived fragments and their encephalitogenic activities in Lewis rats.
    Martenson RE; Deibler GE; Kramer AJ; Levine S
    J Neurochem; 1975 Jan; 24(1):173-82. PubMed ID: 45932
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural studies of calf thymus F3 histone. II. Occurrence of phosphoserine and -N-acetyllysine in thermolysin peptides.
    Marzluff WF; McCarty KS
    Biochemistry; 1972 Jul; 11(14):2677-81. PubMed ID: 5065222
    [No Abstract]   [Full Text] [Related]  

  • 40. Assay of human fibrinopeptides by high-performance liquid chromatography.
    Ebert RF; Bell WR
    Anal Biochem; 1985 Jul; 148(1):70-8. PubMed ID: 4037309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.