These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6118269)

  • 1. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,2-Cyclohexanedione modification of arginine residues in egg-white riboflavin-binding protein.
    Kozik A; Guevara I; Zak Z
    Int J Biochem; 1988; 20(7):707-11. PubMed ID: 3181600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modifications of D-amino acid oxidase. Evidence for active site histidine, tyrosine, and arginine residues.
    Nishino T; Massey V; Williams CH
    J Biol Chem; 1980 Apr; 255(8):3610-6. PubMed ID: 6102567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione.
    Vlahos CJ; Ghalambor MA; Dekker EE
    J Biol Chem; 1985 May; 260(9):5480-5. PubMed ID: 3886656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential arginine residue in human prostatic acid phosphatase.
    McTigue JJ; Van Etten RL
    Biochim Biophys Acta; 1978 Apr; 523(2):422-9. PubMed ID: 656436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione.
    Jiang ZY; Thorpe C
    Biochem J; 1982 Dec; 207(3):415-9. PubMed ID: 7165702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography.
    Patthy L; Váradi A; Thész J; Kovács K
    Eur J Biochem; 1979 Sep; 99(2):309-13. PubMed ID: 499203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis.
    Ramón F; de la Mata I; Iannacone S; Pilar Castillón M; Acebal C
    J Biochem; 1995 Nov; 118(5):911-6. PubMed ID: 8749306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of arginines in bovine growth hormone.
    Wolfenstein-Todel C; Santomé JA
    Int J Pept Protein Res; 1983 Nov; 22(5):611-6. PubMed ID: 6317584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylglyoxal modification of arginines in mammalian D-amino-acid oxidase.
    Vanoni MA; Pilone Simonetta M; Curti B; Negri A; Ronchi S
    Eur J Biochem; 1987 Sep; 167(2):261-7. PubMed ID: 2887428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an essential arginine in the flavoprotein nitroalkane oxidase.
    Gadda G; Banerjee A; Fleming GS; Fitzpatrick PF
    J Enzyme Inhib; 2001; 16(2):157-63. PubMed ID: 11342284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis.
    Gadda G; Negri A; Pilone MS
    J Biol Chem; 1994 Jul; 269(27):17809-14. PubMed ID: 7913089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylation of the active center histidine 217 in D-amino acid oxidase by methyl-p-nitrobenzenesulfonate.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1984 May; 259(9):5585-90. PubMed ID: 6143757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue.
    Balfanz J; Rautenberg P
    Biochem Biophys Res Commun; 1989 Dec; 165(3):1364-70. PubMed ID: 2610698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.
    Ullah AH; Cummins BJ; Dischinger HC
    Biochem Biophys Res Commun; 1991 Jul; 178(1):45-53. PubMed ID: 1648914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
    Davril M; Jung ML; Duportail G; Lohez M; Han KK; Bieth JG
    J Biol Chem; 1984 Mar; 259(6):3851-7. PubMed ID: 6561199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of arginines in D-beta-hydroxybutyrate dehydrogenase.
    Fleer E; Fleischer S
    Biochim Biophys Acta; 1983 Nov; 749(1):1-8. PubMed ID: 6639953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of arginine residues in human growth hormone by 1,2-cyclohexanedione: effects on the binding capacity to lactogenic and somatogenic receptors.
    Atlasovich FM; Caridad JJ; Nowicki C; Santomé JA; Wolfenstein-Todel C
    Arch Biochem Biophys; 1990 Aug; 281(1):1-5. PubMed ID: 2166475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.