BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 6120816)

  • 1. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol.
    Gal J; DeVito D; Harper TW
    Drug Metab Dispos; 1981; 9(6):557-60. PubMed ID: 6120816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.
    Musa MM; Ziegelmann-Fjeld KI; Vieille C; Zeikus JG; Phillips RS
    J Org Chem; 2007 Jan; 72(1):30-4. PubMed ID: 17194078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-phenylethyl isocyanate is a powerful reagent for the chiral analysis of secondary alcohols and hydroxy fatty acids with remote stereogenic centres.
    Habel A; Spiteller D; Boland W
    J Chromatogr A; 2007 Sep; 1165(1-2):182-90. PubMed ID: 17697687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective reduction of ketones by Daucus carota hairy root cultures.
    Caron D; Coughlan AP; Simard M; Bernier J; Piché Y; Chênevert R
    Biotechnol Lett; 2005 May; 27(10):713-6. PubMed ID: 16049739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective oxidation of racemic 1-arylethanols by basil cultured cells of Ocimum basilicum cv. Purpurascens.
    Itoh K; Nakamura K; Utsukihara T; Sakamaki H; Horiuchi CA
    Biotechnol Lett; 2008 May; 30(5):951-4. PubMed ID: 18060603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiomeric analysis of phenylpropanolamine in plasma via resolution of dinitrophenylurea derivatives on a high performance liquid chromatographic chiral stationary phase.
    Doyle TD; Brunner CA; Vick JA
    Biomed Chromatogr; 1991 Jan; 5(1):43-6. PubMed ID: 1851648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols.
    Yang C; Ying X; Yu M; Zhang Y; Xiong B; Song Q; Wang Z
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1431-43. PubMed ID: 22743788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disposition of (R,S)-tocainide. Some stereoselective aspects.
    Gal J; French TA; Zysset T; Haroldsen PE
    Drug Metab Dispos; 1982; 10(4):399-404. PubMed ID: 6126341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and reactivity of enantiomeric (BINOLato)Ni+ complexes with chiral secondary alcohols in the gas phase.
    Novara FR; Gruene P; Schröder D; Schwarz H
    Chemistry; 2008; 14(19):5957-65. PubMed ID: 18494022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of racemic 2-aminocyclohexanol derivatives and their application as ligands in asymmetric catalysis.
    Schiffers I; Rantanen T; Schmidt F; Bergmans W; Zani L; Bolm C
    J Org Chem; 2006 Mar; 71(6):2320-31. PubMed ID: 16526780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The direct catalytic asymmetric alpha-aminooxylation reaction: development of stereoselective routes to 1,2-diols and 1,2-amino alcohols and density functional calculations.
    Córdova A; Sundén H; Bøgevig A; Johansson M; Himo F
    Chemistry; 2004 Aug; 10(15):3673-84. PubMed ID: 15281151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselectivity of the carbonyl reduction of dolasetron in rats, dogs, and humans.
    Dow J; Berg C
    Chirality; 1995; 7(5):342-8. PubMed ID: 7495640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro metabolism of amphetamine: an apparent enantiomeric interaction.
    Gal J; Wright J; Cho AK
    Res Commun Chem Pathol Pharmacol; 1976 Nov; 15(3):525-40. PubMed ID: 996364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photobiocatalyzed asymmetric reduction of ketones using Chlorella sp. MK201.
    Itoh K; Nakamura K; Aoyama T; Matsuba R; Kakimoto T; Murakami M; Yamanaka R; Muranaka T; Sakamaki H; Takido T
    Biotechnol Lett; 2012 Nov; 34(11):2083-6. PubMed ID: 22829283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol.
    Itoh K; Hoshino K; Endo A; Asakawa T; Yamakami K; Noji C; Kosaka T; Tanaka Y
    Chirality; 2006 Sep; 18(9):698-706. PubMed ID: 16823812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (S)-selective dynamic kinetic resolution of secondary alcohols by the combination of subtilisin and an aminocyclopentadienylruthenium complex as the catalysts.
    Kim MJ; Chung YI; Choi YK; Lee HK; Kim D; Park J
    J Am Chem Soc; 2003 Sep; 125(38):11494-5. PubMed ID: 13129341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products.
    Chang MS; Boeglin WE; Guengerich FP; Brash AR
    Biochemistry; 1996 Jan; 35(2):464-71. PubMed ID: 8555216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine-Ir(I) complexes.
    Li YY; Zhang XQ; Dong ZR; Shen WY; Chen G; Gao JX
    Org Lett; 2006 Nov; 8(24):5565-7. PubMed ID: 17107073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.