These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 6121338)

  • 1. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions.
    Michell RH; Kirk CJ; Jones LM; Downes CP; Creba JA
    Philos Trans R Soc Lond B Biol Sci; 1981 Dec; 296(1080):123-38. PubMed ID: 6121338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium and the endothelin-1 and alpha 1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes.
    van Heugten HA; de Jonge HW; Bezstarosti K; Lamers JM
    J Mol Cell Cardiol; 1994 Aug; 26(8):1081-93. PubMed ID: 7528283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol lipids: receptor-stimulated hydrolysis and cellular lipid pools.
    Michell RH; Kirk CJ; Maccallum SH; Hunt PA
    Philos Trans R Soc Lond B Biol Sci; 1988 Jul; 320(1199):239-46. PubMed ID: 2906136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphoinositide breakdown as the initiating reaction in receptor-stimulated inositol phospholipid metabolism.
    Michell RH
    Life Sci; 1983 May; 32(18):2083-5. PubMed ID: 6302423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol lipid breakdown as a step in alpha-adrenergic stimulus-response coupling.
    Michell RH
    Clin Sci (Lond); 1985; 68 Suppl 10():43s-46s. PubMed ID: 2857618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phosphatidylinositol 4,5 bisphosphate breakdown in cell-surface receptor activation.
    Kirk CJ; Bone EA; Palmer S; Michell RH
    J Recept Res; 1984; 4(1-6):489-504. PubMed ID: 6098668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between phosphatidylinositol metabolism and mobilization of intracellular calcium elicited by alpha1-adrenergic receptor stimulation in BC3H-1 muscle cells.
    Ambler SK; Brown RD; Taylor P
    Mol Pharmacol; 1984 Nov; 26(3):405-13. PubMed ID: 6092893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol lipids in cellular signalling mechanisms.
    Michell RH
    Trends Biochem Sci; 1992 Aug; 17(8):274-6. PubMed ID: 1412699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linking membrane IgM induces production of inositol trisphosphate and inositol tetrakisphosphate in WEHI-231 B lymphoma cells.
    Fahey KA; DeFranco AL
    J Immunol; 1987 Jun; 138(11):3935-42. PubMed ID: 3035017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver.
    Lynch CJ; Blackmore PF; Charest R; Exton JH
    Mol Pharmacol; 1985 Aug; 28(2):93-9. PubMed ID: 2991741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoinositide metabolism in intestinal brush borders: stimulation of IP3 formation by guanine nucleotides and Ca2+.
    Vaandrager AB; Ploemacher MC; De Jonge HR
    Am J Physiol; 1990 Sep; 259(3 Pt 1):G410-9. PubMed ID: 2169204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal regulation of phosphatidylinositol breakdown.
    Fain JN; Lin SH; Litosch I; Wallace M
    Life Sci; 1983 May; 32(18):2055-67. PubMed ID: 6302422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased plasma membrane permeability to Ca2+ in anti-Ig-stimulated B lymphocytes is dependent on activation of phosphoinositide hydrolysis.
    Ransom JT; Chen M; Sandoval VM; Pasternak JA; Digiusto D; Cambier JC
    J Immunol; 1988 May; 140(9):3150-5. PubMed ID: 2834453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol phosphate formation and its relationship to calcium signaling.
    Hughes AR; Putney JW
    Environ Health Perspect; 1990 Mar; 84():141-7. PubMed ID: 2190808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2+ requirements for phospholipase C activation.
    Fisher SK; Domask LM; Roland RM
    Mol Pharmacol; 1989 Feb; 35(2):195-204. PubMed ID: 2537457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of phosphatidylinositides in stimulus-secretion coupling in the exocrine pancreas.
    Schulz I; Schnefel S; Banfić H; Thévenod F; Kemmer T; Eckhardt L
    Soc Gen Physiol Ser; 1987; 42():117-31. PubMed ID: 3145561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of inositol phospholipid and inositol phosphate metabolism in chemoattractant-activated human polymorphonuclear leukocytes.
    Dillon SB; Murray JJ; Uhing RJ; Snyderman R
    J Cell Biochem; 1987 Dec; 35(4):345-59. PubMed ID: 3126197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscarinic stimulation of phosphatidylinositol metabolism in atria.
    Brown SL; Brown JH
    Mol Pharmacol; 1983 Nov; 24(3):351-6. PubMed ID: 6633501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of signalling initiated by phosphoinositidase-C-linked receptors.
    Wojcikiewicz RJ; Nahorski SR
    J Exp Biol; 1993 Nov; 184():145-59. PubMed ID: 8270853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,25-dihydroxyvitamin D3 inhibits Na(+)-H+ exchange by stimulating membrane phosphoinositide turnover and increasing cytosolic calcium in CaCo-2 cells.
    Wali RK; Baum CL; Bolt MJ; Brasitus TA; Sitrin MD
    Endocrinology; 1992 Sep; 131(3):1125-33. PubMed ID: 1324151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.