These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 6122211)

  • 21. The apamin-sensitive potassium current in frog skeletal muscle: its dependence on the extracellular calcium and sensitivity to calcium channel blockers.
    Traoré F; Cognard C; Potreau D; Raymond G
    Pflugers Arch; 1986 Aug; 407(2):199-203. PubMed ID: 2428007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.
    Burgess GM; Claret M; Jenkinson DH
    J Physiol; 1981 Aug; 317():67-90. PubMed ID: 6273550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacology of the high-affinity apamin receptor in rabbit heart.
    Schetz JA; Anderson PA
    Cardiovasc Res; 1995 Nov; 30(5):755-62. PubMed ID: 8595623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and photoaffinity labeling of the Ca2+-activated K+ channel-associated apamin receptor in cultured astrocytes from rat brain.
    Seagar MJ; Deprez P; Martin-Moutot N; Couraud F
    Brain Res; 1987 May; 411(2):226-30. PubMed ID: 2440516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle.
    Blatz AL; Magleby KL
    Nature; 1986 Oct 23-29; 323(6090):718-20. PubMed ID: 2430185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apamin blocks certain neurotransmitter-induced increases in potassium permeability.
    Banks BE; Brown C; Burgess GM; Burnstock G; Claret M; Cocks TM; Jenkinson DH
    Nature; 1979 Nov; 282(5737):415-7. PubMed ID: 228203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resistance to apamin of the Ca2+-activated K+ permeability in pancreatic B-cells.
    Lebrun P; Atwater I; Claret M; Malaisse WJ; Herchuelz A
    FEBS Lett; 1983 Sep; 161(1):41-4. PubMed ID: 6411494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K+ channel subunits and target size analysis.
    Seagar MJ; Labbé-Jullié C; Granier C; Goll A; Glossmann H; Van Rietschoten J; Couraud F
    Biochemistry; 1986 Jul; 25(14):4051-7. PubMed ID: 2427110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and regulation of the expression of scyllatoxin (Leiurotoxin I) receptors in the human neuroblastoma cell line NB-OK 1.
    Gossen D; Gesquière JC; Tastenoy M; De Neef P; Waelbroeck M; Christophe J
    FEBS Lett; 1991 Jul; 285(2):271-4. PubMed ID: 1855593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin.
    Hugues M; Schmid H; Lazdunski M
    Biochem Biophys Res Commun; 1982 Aug; 107(4):1577-82. PubMed ID: 6291536
    [No Abstract]   [Full Text] [Related]  

  • 31. Photoaffinity labeling of the K+-channel-associated apamin-binding molecule in smooth muscle, liver and heart membranes.
    Marquèze B; Seagar MJ; Couraud F
    Eur J Biochem; 1987 Dec; 169(2):295-8. PubMed ID: 2446869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization.
    Auguste P; Hugues M; Gravé B; Gesquière JC; Maes P; Tartar A; Romey G; Schweitz H; Lazdunski M
    J Biol Chem; 1990 Mar; 265(8):4753-9. PubMed ID: 2307683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubilization of the apamin receptor associated with a calcium-activated potassium channel from rat brain.
    Seagar MJ; Marqueze B; Couraud F
    J Neurosci; 1987 Feb; 7(2):565-70. PubMed ID: 2434630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of the K+ channel blockers apamin and quinine on glucose-induced electrical activity in pancreatic beta-cells from a strain of ob/ob (obese) mice.
    Rosario LM
    FEBS Lett; 1985 Sep; 188(2):302-6. PubMed ID: 2411599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific binding properties of 125I-apamin in various structures of the rat central nervous system.
    Janicki PK
    Acta Physiol Pol; 1989; 40(2):235-9. PubMed ID: 2641420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotensin-mediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: involvement of the inhibitory GTP-binding component of adenylate cyclase.
    Bozou JC; Amar S; Vincent JP; Kitabgi P
    Mol Pharmacol; 1986 May; 29(5):489-96. PubMed ID: 3010077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apamin, a highly specific Ca2+ blocking agent in heart muscle.
    Bkaily G; Sperelakis N; Renaud JF; Payet MD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H961-5. PubMed ID: 2408493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons.
    Zhang L; Krnjević K
    Neurosci Lett; 1987 Feb; 74(1):58-62. PubMed ID: 2436107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Possible increases in potassium conductance by apamin in mammalian ventricular papillary muscles: a comparison with the effects on enzymatically isolated ventricular cells.
    Nakagawa A; Nakamura S; Arita M
    J Cardiovasc Pharmacol; 1989 Jul; 14(1):38-45. PubMed ID: 2475713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.