These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6122476)
1. Hereditary high concentration of glutathione in canine erythrocytes associated with high accumulation of glutamate, glutamine, and aspartate. Maede Y; Kasai N; Taniguchi N Blood; 1982 May; 59(5):883-9. PubMed ID: 6122476 [TBL] [Abstract][Full Text] [Related]
2. Increase of Na-K-ATPase activity, glutamate, and aspartate uptake in dog erythrocytes associated with hereditary high accumulation of GSH, glutamate, glutamine, and aspartate. Maede Y; Inaba M; Taniguchi N Blood; 1983 Mar; 61(3):493-9. PubMed ID: 6297638 [TBL] [Abstract][Full Text] [Related]
3. Relation between erythrocyte reduced glutathione and glutamate concentrations in Korean Jindo dogs with erythrocytes possessing hereditary high activity of Na-K-ATPase and a high concentration of potassium. Yamato O; Lee KW; Chang HS; Tajima M; Maede Y J Vet Med Sci; 1999 Oct; 61(10):1179-82. PubMed ID: 10563301 [TBL] [Abstract][Full Text] [Related]
4. Variant of canine erythrocytes with high potassium content and lack of glutathione accumulation. Fujise H; Mori M; Ogawa E; Maede Y Am J Vet Res; 1993 Apr; 54(4):602-6. PubMed ID: 8097905 [TBL] [Abstract][Full Text] [Related]
5. Transport of amino acids for glutathione biosynthesis in human and dog red cells. Ellory JC; Preston RL; Osotimehin B; Young JD Biomed Biochim Acta; 1983; 42(11-12):S48-52. PubMed ID: 6144310 [TBL] [Abstract][Full Text] [Related]
6. Increase of Na+ gradient-dependent L-glutamate and L-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase. Inaba M; Maede Y J Biol Chem; 1984 Jan; 259(1):312-7. PubMed ID: 6142884 [TBL] [Abstract][Full Text] [Related]
7. A dog possessing high glutathione (GSH) and K concentrations with an increased Na, K-ATPase activity in its erythrocytes. Ogawa E; Fujise H; Kobayashi K Jikken Dobutsu; 1988 Apr; 37(2):187-90. PubMed ID: 2840304 [TBL] [Abstract][Full Text] [Related]
8. Plasma and erythrocyte amino acid levels in normal adult subjects fed a high protein meal with and without added monosodium glutamate. Stegink LD; Filer LJ; Baker GL J Nutr; 1982 Oct; 112(10):1953-60. PubMed ID: 7119898 [TBL] [Abstract][Full Text] [Related]
9. Effect of aspartame and aspartate loading upon plasma and erythrocyte free amino acids in normal adult volunteers. Nutr Rev; 1978 Apr; 36(4):110-2. PubMed ID: 353592 [No Abstract] [Full Text] [Related]
10. Elevated erythrocyte glutathione associated with elevated substrate in high- and low-glutathione sheep. Smith JE Biochim Biophys Acta; 1977 Feb; 496(2):516-20. PubMed ID: 13866 [TBL] [Abstract][Full Text] [Related]
11. Assimilation of alpha-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis. King GF; Kuchel PW Biochem J; 1985 May; 227(3):833-42. PubMed ID: 2860897 [TBL] [Abstract][Full Text] [Related]
12. [Changes in carbohydrate and amino acid metabolism in dog brain in experimental alloxan diabetes. 2]. Egian VB; Buniatian HCh; Turshian GA; Hagopian GE Vopr Biokhim Mozga; 1970; 6():147-56. PubMed ID: 5526449 [No Abstract] [Full Text] [Related]
13. A comparison in normal individuals and sickle cell patients of reduced glutathione precursors and their transport between plasma and red cells. Kiessling K; Roberts N; Gibson JS; Ellory JC Hematol J; 2000; 1(4):243-9. PubMed ID: 11920197 [TBL] [Abstract][Full Text] [Related]
14. Huntington's disease. Glutamate and aspartate metabolism in blood platelets. Mangano RM; Schwarcz R J Neurol Sci; 1982 Mar; 53(3):489-500. PubMed ID: 6121842 [TBL] [Abstract][Full Text] [Related]
15. Gamma-glutamyl peptides and related amino acids in rat hippocampus in vitro: effect of depolarization and gamma-glutamyl transpeptidase inhibition. Li X; Orwar O; Revesjö C; Sandberg M Neurochem Int; 1996 Aug; 29(2):121-8. PubMed ID: 8837040 [TBL] [Abstract][Full Text] [Related]
16. Effects of a parenteral nutrition regimen containing dicarboxylic amino acids on plasma, erythrocyte, and urinary amino acid concentrations of young infants. Bell EF; Filer LJ; Wong AP; Stegink LD Am J Clin Nutr; 1983 Jan; 37(1):99-107. PubMed ID: 6129797 [TBL] [Abstract][Full Text] [Related]
17. Comparison of amino acid concentrations between plasma and erythrocytes. Studies in normal human subjects and those with metabolic disorders. Levy HL; Barkin E J Lab Clin Med; 1971 Oct; 78(4):517-23. PubMed ID: 5114049 [No Abstract] [Full Text] [Related]
18. Heredity of red blood cells with high K and low glutathione (HK/LG) and high K and high glutathione (HK/HG) in a family of Japanese Shiba Dogs. Fujise H; Hishiyama N; Ochiai H Exp Anim; 1997 Jan; 46(1):41-6. PubMed ID: 9027470 [TBL] [Abstract][Full Text] [Related]
19. Plasma glutamate and aspartate concentrations in young infants on Neopham. Bell EF; Filer LJ; Stegink LD Acta Chir Scand Suppl; 1983; 517():29-37. PubMed ID: 6145275 [No Abstract] [Full Text] [Related]
20. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations. Yamasaki M; Takada A; Yamato O; Maede Y J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]