BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6123608)

  • 1. Distribution of gamma-glutamyl transpeptidase and glutaminase isoenzymes in the rabbit single nephron.
    Shimada H; Endou H; Sakai F
    Jpn J Pharmacol; 1982 Feb; 32(1):121-9. PubMed ID: 6123608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate-independent glutaminase from rat kidney. Partial purification and identity with gamma-glutamyltranspeptidase.
    Curthoys NP; Kuhlenschmidt T
    J Biol Chem; 1975 Mar; 250(6):2099-105. PubMed ID: 234956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identity of maleate-stimulated glutaminase with gamma-glutamyl transpeptidase in rat kidney.
    Tate SS; Meister A
    J Biol Chem; 1975 Jun; 250(12):4619-27. PubMed ID: 237905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase.
    Tate SS; Meister A
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3329-33. PubMed ID: 4154442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of rat kidney glutaminase enzymes and their role in renal ammoniagenesis.
    Curthoys NP; Godfrey SS
    Curr Probl Clin Biochem; 1976; 6():346-56. PubMed ID: 11965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous distribution of alkaline phosphatase and gamma-glutamyl transpeptidase in the mouse nephron.
    Brière N; Martel M; Plante G; Petitclerc C
    Acta Histochem; 1984; 74(1):103-8. PubMed ID: 6145277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney.
    Curthoys NP; Lowry OH
    J Biol Chem; 1973 Jan; 248(1):162-8. PubMed ID: 4692829
    [No Abstract]   [Full Text] [Related]  

  • 8. [Activity of renal enzymes producing ammonia from glutamine in the absence of phosphate: 2. Effect of phosphate dependent glutaminase inhibition by heating].
    Robaudo C; Garibotto G; Ghiggeri GM; Bruzzone M; Deferrari G
    Boll Soc Ital Biol Sper; 1981 Oct; 57(19):1998-2003. PubMed ID: 6119102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proximal tubule segments in the mouse nephron by simultaneous visualization of alkaline phosphatase and gamma-glutamyl transpeptidase.
    Brière N; Martel M; Plante G; Petitclerc C
    Acta Histochem; 1985; 77(1):37-45. PubMed ID: 2414959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ochratoxin A decreases the activity of phosphoenolpyruvate carboxykinase and its mRNA content in primary cultures of rat kidney proximal convoluted tubule cells.
    Thekkumkara TJ; Patel MS
    Biochem Biophys Res Commun; 1989 Aug; 162(3):916-20. PubMed ID: 2569870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal enzyme activities in experimental ochratoxin A-induced porcine nephropathy: diagnostic potential of phosphoenolpyruvate carboxykinase and gamma-glutamyl transpeptidase activity.
    Krogh P; Gyrd-Hansen N; Hald B; Larsen S; Nielsen JP; Smith M; Ivanoff C; Meisner H
    J Toxicol Environ Health; 1988; 23(1):1-14. PubMed ID: 2891856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry.
    Cramer SC; Pardridge WM; Hirayama BA; Wright EM
    Diabetes; 1992 Jun; 41(6):766-70. PubMed ID: 1350259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theanine, gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase.
    Tsuge H; Sano S; Hayakawa T; Kakuda T; Unno T
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):47-53. PubMed ID: 12595072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential properties of brush-border membrane vesicles from early and late proximal tubules of rat kidney.
    Yusufi AN; Murayama N; Gapstur SM; Szczepanska-Konkel M; Dousa TP
    Biochim Biophys Acta; 1994 Apr; 1191(1):117-32. PubMed ID: 7908831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments.
    Wright PA; Knepper MA
    Am J Physiol; 1990 Dec; 259(6 Pt 2):F961-70. PubMed ID: 2175563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunocytochemical localization of gamma-glutamyl-transferase on isolated renal cortical tubular fragments.
    Pfaller W; Gstraunthaler G; Kotanko P; Wolf H; Curthoys NP
    Histochemistry; 1984; 80(3):289-93. PubMed ID: 6144646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurement of glucose-6-phosphate dehydrogenase in cortical fractions of the rabbit nephron.
    Nørgaard T
    Histochemistry; 1979 Sep; 63(1):103-13. PubMed ID: 511594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic patterns in various structures of the rat nephron. The distribution of enzymes of carbohydrate metabolism.
    Schmidt U; Dubach UC; Guder WG; Funk B; Paris K
    Curr Probl Clin Biochem; 1975; 4():22-32. PubMed ID: 172283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dietary protein quality on rat kidney glutaminase activity.
    Kuttykrishnan C; Santhanam K; Rama Rao MV; Vijayaraghavan PK
    Ann Nutr Metab; 1981; 25(3):151-7. PubMed ID: 6116475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Activity of renal enzymes producing ammonia from glutamine in the absence of phosphate in the rat: 1. Effect of chronic metabolic acidosis].
    Robaudo C; Acquarone N; Ghiggeri GM; Garibotto G; Sala R; Deferrari G
    Boll Soc Ital Biol Sper; 1981 Oct; 57(19):1992-7. PubMed ID: 6119101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.