These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6125209)

  • 1. Efflux of L-glutamate by synaptic plasma membrane vesicles isolated from rat brain.
    Kanner BI; Marva E
    Biochemistry; 1982 Jun; 21(13):3143-7. PubMed ID: 6125209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.
    Moriyama Y; Maeda M; Futai M
    J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active transport of L-glutamate by membrane vesicles isolated from rat brain.
    Kanner BI; Sharon I
    Biochemistry; 1978 Sep; 17(19):3949-53. PubMed ID: 708689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux and exchange of glycine by synaptic plasma membrane vesicles derived from rat brain.
    Aragón MC; Giménez C
    Biochim Biophys Acta; 1986 Feb; 855(2):257-64. PubMed ID: 3947622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain.
    Kanner BI; Bendahan A
    Biochemistry; 1982 Nov; 21(24):6327-30. PubMed ID: 6129891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efflux and exchange of gamma-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicles isolated from immature rat brain.
    Kanner BI; Bendahan A; Radian R
    Biochim Biophys Acta; 1983 May; 731(1):54-62. PubMed ID: 6849911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the properties of gamma-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain.
    Fykse EM; Christensen H; Fonnum F
    J Neurochem; 1989 Mar; 52(3):946-51. PubMed ID: 2465384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain.
    Pines G; Kanner BI
    Biochemistry; 1990 Dec; 29(51):11209-14. PubMed ID: 1980217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization-induced release of L-glutamic acid from isolated-resealed synaptic membrane vesicles.
    Chang HH; Michaelis EK
    Biochim Biophys Acta; 1984 Jan; 769(2):499-504. PubMed ID: 6141805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-alanine transport in synaptic plasma membrane vesicles from rat brain. Efflux, exchange and stoichiometry.
    Agullo L; Jimenez B; Aragón C; Giménez C
    Eur J Biochem; 1986 Sep; 159(3):611-7. PubMed ID: 3093232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of the efflux of L-glutamate from renal brush-border membrane vesicles by extravesicular potassium.
    Sacktor B; Lepor N; Schneider EG
    Biosci Rep; 1981 Sep; 1(9):709-13. PubMed ID: 6125220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.
    MacDonald RE; Lanyi JK; Greene RV
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulated glutamate levels in the synaptic vesicle are not maintained in the absence of active transport.
    Carlson MD; Ueda T
    Neurosci Lett; 1990 Mar; 110(3):325-30. PubMed ID: 1970147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH.
    Tabb JS; Kish PE; Van Dyke R; Ueda T
    J Biol Chem; 1992 Aug; 267(22):15412-8. PubMed ID: 1353494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine transport by membrane vesicles isolated from rat brain.
    Aragón MC; Giménez C; Mayor F; Marvizón JG; Valdivieso F
    Biochim Biophys Acta; 1981 Sep; 646(3):465-70. PubMed ID: 7284373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of grisorixin on glutamate transport and oxidation in rat liver mitochondria. Relationships between transport and oxidation.
    Debise R; Briand Y; Durand R; Gachon P; Jeminet G
    Biochimie; 1977; 59(5-6):497-508. PubMed ID: 19094
    [No Abstract]   [Full Text] [Related]  

  • 19. L-glutamate stimulation of Na+ efflux from brain synaptic membrane vesicles.
    Chang HH; Michaelis EK
    J Biol Chem; 1981 Oct; 256(19):10084-7. PubMed ID: 6115859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients.
    Hell JW; Edelmann L; Hartinger J; Jahn R
    Biochemistry; 1991 Dec; 30(51):11795-800. PubMed ID: 1684290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.