These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6125508)

  • 41. Regulation of calcium transport in cardiac sarcoplasmic reticulum by cyclic AMP-dependent protein kinase.
    Tada M; Kirchberger MA; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():225-39. PubMed ID: 176697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of heart sarcolemmal calcium transport system and effect of protein kinase on sarcolemmal calcium accumulation.
    Sulakhe PV; St Louis PJ
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():241-7. PubMed ID: 201983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of heart sarcolemmal Ca2+/Mg2+ ATPase by cyclic AMP-dependent protein kinase.
    Ziegelhoffer A; Anand-Srivastava MB; Khandelwal RL; Dhalla NS
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1073-81. PubMed ID: 227376
    [No Abstract]   [Full Text] [Related]  

  • 44. Characteristics of Ca2(+)-stimulated ATPase in rat heart sarcolemma in the presence of dithiothreitol and alamethicin.
    Seppet EK; Dhalla NS
    Mol Cell Biochem; 1989 Nov 23-Dec 19; 91(1-2):137-47. PubMed ID: 2533664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defective sarcolemmal phosphorylation associated with noninsulin-dependent diabetes.
    Allo SN; Schaffer SW
    Biochim Biophys Acta; 1990 Apr; 1023(2):206-12. PubMed ID: 2158349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.
    Seiler SM; Cragoe EJ; Jones LR
    J Biol Chem; 1985 Apr; 260(8):4869-76. PubMed ID: 2985568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid preparation of canine cardiac sarcolemmal vesicles by sucrose flotation.
    Jones LR
    Methods Enzymol; 1988; 157():85-91. PubMed ID: 2852758
    [No Abstract]   [Full Text] [Related]  

  • 48. Mechanism of passive Ca2+ permeability of vesicular sarcolemmal preparations from rat hearts.
    Kupriyanov VV; Preobrazhensky AN; Saks VA
    Biochim Biophys Acta; 1983 Feb; 728(2):239-53. PubMed ID: 6299343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is the sarcolemmal Na+ -K+ ATPase involved in active calcium transport?
    Grosse R; Spitzer E; Kupriyanov VV; Preobrazhensky AN
    Adv Myocardiol; 1982; 3():335-44. PubMed ID: 6302778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential centrifugation separates cardiac sarcolemmal and endosomal membranes from Langendorff-perfused rat hearts.
    Fuller W; Eaton P; Medina RA; Bell J; Shattock MJ
    Anal Biochem; 2001 Jun; 293(2):216-23. PubMed ID: 11399035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart.
    Pierce GN; Dhalla NS
    Am J Physiol; 1983 Sep; 245(3):C241-7. PubMed ID: 6137147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Concerted phosphorylation of the 26-kilodalton phospholamban oligomer and of the low molecular weight phospholamban subunits.
    Gasser JT; Chiesi MP; Carafoli E
    Biochemistry; 1986 Nov; 25(23):7615-23. PubMed ID: 2948562
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stimulation of cardiac sarcolemmal (Na+--K+) ATPase activity by phosphorylase kinase.
    St Louis PJ; Sulakhe PV
    Eur J Pharmacol; 1977 Jun; 43(3):277-80. PubMed ID: 141374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Passive Ca2+ permeability of vesicular sarcolemmal preparations from myocardium].
    Kupriianov VV; Preobrazherskiĭ AN; Saks VA
    Biokhimiia; 1981 Oct; 46(10):1863-79. PubMed ID: 6458335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart.
    Will H; Schirpke B; Wollenberger A
    Acta Biol Med Ger; 1976; 35(5):529-41. PubMed ID: 185862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of dystrophin in cardiac sarcolemmal vesicles.
    Michalak M; Zubrzycka-Gaarn E
    Biochem Biophys Res Commun; 1990 Jun; 169(2):565-70. PubMed ID: 2141468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3',5'-monophosphate dependent protein kinase.
    Kranias EG; Mandel F; Wang T; Schwartz A
    Biochemistry; 1980 Nov; 19(23):5434-9. PubMed ID: 6255993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A calmodulin dependent protein kinase activity associated with rabbit heart sarcolemma.
    Tuana BS; Murphy BJ; Schwarzkopf C
    Mol Cell Biochem; 1987 Nov; 78(1):47-54. PubMed ID: 3454868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP
    Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of adenosine 3':5'-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles.
    Kirchberger MA; Tada M
    J Biol Chem; 1976 Feb; 251(3):725-9. PubMed ID: 175060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.