These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6125513)

  • 21. N-methyltryptophan oxidase from Escherichia coli: reaction kinetics with N-methyl amino acid and carbinolamine substrates.
    Khanna P; Schuman Jorns M
    Biochemistry; 2001 Feb; 40(5):1451-9. PubMed ID: 11170473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-principles molecular dynamics investigation of the D-amino acid oxidative half-reaction catalyzed by the flavoenzyme D-amino acid oxidase.
    Tilocca A; Gamba A; Vanoni MA; Fois E
    Biochemistry; 2002 Dec; 41(48):14111-21. PubMed ID: 12450374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactivity of the imino acids formed in the amino acid oxidase reaction.
    Hafner EW; Wellner D
    Biochemistry; 1979 Feb; 18(3):411-7. PubMed ID: 33698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.
    Ramón F; Castillón M; De La Mata I; Acebal C
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):311-4. PubMed ID: 9461524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH and kinetic isotope effects in d-amino acid oxidase catalysis.
    Harris CM; Pollegioni L; Ghisla S
    Eur J Biochem; 2001 Nov; 268(21):5504-20. PubMed ID: 11683874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-electron reduction of D-amino acid oxidase. Kinetics of conversion from the red semiquinone to the blue semiquinone.
    Kobayashi K; Hirota K; Ohara H; Hayashi K; Miura R; Yamano T
    Biochemistry; 1983 Apr; 22(9):2239-43. PubMed ID: 6134550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism.
    Denu JM; Fitzpatrick PF
    Biochemistry; 1994 Apr; 33(13):4001-7. PubMed ID: 7908225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the mechanism of D-amino acid oxidase. Structure/linear free energy correlations and deuterium kinetic isotope effects using substituted phenylglycines.
    Pollegioni L; Blodig W; Ghisla S
    J Biol Chem; 1997 Feb; 272(8):4924-34. PubMed ID: 9030552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiazolidine-2-carboxylic acid, an adduct of cysteamine and glyoxylate, as a substrate for D-amino acid oxidase.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Feb; 257(3):1166-71. PubMed ID: 6120164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.
    Hersh LB; Jorns MS
    J Biol Chem; 1975 Nov; 250(22):8728-34. PubMed ID: 390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial sarcosine oxidase: identification of novel substrates and a biradical reaction intermediate.
    Zeller HD; Hille R; Jorns MS
    Biochemistry; 1989 Jun; 28(12):5145-54. PubMed ID: 2475174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A resonance Raman study on the reaction intermediates of D-amino acid oxidase.
    Miura R; Nishina Y; Shiga K; Tojo H; Watari H; Miyake Y; Yamano T
    J Biochem; 1982 Mar; 91(3):837-43. PubMed ID: 6122682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisitation of the βCl-elimination reaction of D-amino acid oxidase: new interpretation of the reaction that sparked flavoprotein dehydrogenation mechanisms.
    Ghisla S; Pollegioni L; Molla G
    J Biol Chem; 2011 Nov; 286(47):40987-98. PubMed ID: 21949129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the FAD-containing N-methyltryptophan oxidase from Escherichia coli.
    Khanna P; Schuman Jorns M
    Biochemistry; 2001 Feb; 40(5):1441-50. PubMed ID: 11170472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution.
    Liu Q; Chen L; Zhang Z; Du B; Xiao Y; Yang K; Gong L; Wu L; Li X; He Y
    Sci Rep; 2017 Jun; 7(1):2994. PubMed ID: 28592826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of imino acids as products of the reactions catalyzed by D- and L-amino acid oxidases.
    Hafner EW; Wellner D
    Proc Natl Acad Sci U S A; 1971 May; 68(5):987-91. PubMed ID: 4396920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2.
    Mattevi A; Vanoni MA; Todone F; Rizzi M; Teplyakov A; Coda A; Bolognesi M; Curti B
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7496-501. PubMed ID: 8755502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophilic amination of a single methionine residue located at the active site of D-amino acid oxidase by O-(2,4-dinitrophenyl)hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1986 Sep; 25(19):5602-8. PubMed ID: 2877687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of D-amino acid oxidase by alpha-keto acids analogs of amino acids.
    Moreno JA; Montes FJ; Catalán J; Galán MA
    Enzyme Microb Technol; 1996 Apr; 18(5):379-82. PubMed ID: 8882005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.