These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6126387)

  • 1. Configurations of microtubules in artificially activated eggs of the sea urchin Lytechinus variegatus.
    Bestor TH; Schatten G
    Exp Cell Res; 1982 Sep; 141(1):71-8. PubMed ID: 6126387
    [No Abstract]   [Full Text] [Related]  

  • 2. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus.
    Mar H
    Dev Biol; 1980 Jul; 78(1):1-13. PubMed ID: 7399136
    [No Abstract]   [Full Text] [Related]  

  • 3. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus).
    Salmon ED; Segall RR
    J Cell Biol; 1980 Aug; 86(2):355-65. PubMed ID: 7190569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized microtubule gliding and particle saltations produced by soluble factors from sea urchin eggs and embryos.
    Pryer NK; Wadsworth P; Salmon ED
    Cell Motil Cytoskeleton; 1986; 6(6):537-48. PubMed ID: 2879641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of multiple monoclonal antibodies to characterize the major microtubule-associated protein in sea urchin eggs.
    Bloom GS; Luca FC; Collins CA; Vallee RB
    Cell Motil; 1985; 5(6):431-46. PubMed ID: 2866844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of microtubules and microtubule-associated proteins from sea urchin eggs and cultured mammalian cells using taxol, and use of exogenous taxol-stabilized brain microtubules for purifying microtubule-associated proteins.
    Vallee RB; Collins CA
    Methods Enzymol; 1986; 134():116-27. PubMed ID: 2881189
    [No Abstract]   [Full Text] [Related]  

  • 9. Fine structure of the mitotic cycle of unfertilized sea urchin eggs activated by ammoniacal sea water.
    Paweletz N; Mazia D
    Eur J Cell Biol; 1979 Oct; 20(1):37-44. PubMed ID: 574819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular pH shift initiates microtubule-mediated motility during sea urchin fertilization.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Ann N Y Acad Sci; 1986; 466():940-4. PubMed ID: 3460463
    [No Abstract]   [Full Text] [Related]  

  • 11. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased free Ca2+ levels delay the onset of mitosis in fertilized and artificially activated eggs of the sea urchin.
    Wagenaar EB
    Exp Cell Res; 1983 Oct; 148(1):73-82. PubMed ID: 6195004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubulin dynamics during the cytoplasmic cohesiveness cycle in artificially activated sea urchin eggs.
    Coffe G; Foucault G; Raymond MN; Pudles J
    Exp Cell Res; 1983 Dec; 149(2):409-18. PubMed ID: 6641809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Total proteins levels and embryonic development of eggs of sea urchins (Lytechinus variegatus) treated with YbCl3].
    de Oliveira AM; Rodrigues NL; Tse HG; Tse Mdo C; Padovani CR; Rossi C
    Rev Bras Biol; 1989 Feb; 49(1):231-5. PubMed ID: 2762599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea urchin microtubules.
    Suprenant KA; Foltz Daggett MA
    Curr Top Dev Biol; 1995; 31():65-99. PubMed ID: 8746662
    [No Abstract]   [Full Text] [Related]  

  • 16. Development and life cycle of the parthenogenetically activated sea urchin embryo.
    Brandriff B; Hinegardner RI; Steinhardt R
    J Exp Zool; 1975 Apr; 192(1):13-24. PubMed ID: 1092807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic extracts from the eggs of sea urchins and clams for the study of microtubule-associated motility and bundling.
    Gliksman NR; Parsons SF; Salmon ED
    Methods Cell Biol; 1993; 39():237-51. PubMed ID: 8246801
    [No Abstract]   [Full Text] [Related]  

  • 18. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of sea urchin spindles and cytasters.
    Kuriyama R
    Methods Enzymol; 1986; 134():190-9. PubMed ID: 2881190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.