These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6126520)

  • 1. Phenotypic resistance to amphotericin B in Candida albicans: relationship to glucan metabolism.
    Notario V; Gale EF; Kerridge D; Wayman F
    J Gen Microbiol; 1982 Apr; 128(4):761-77. PubMed ID: 6126520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth.
    Gale EF; Johnson AM; Kerridge D; Koh TY
    J Gen Microbiol; 1975 Mar; 87(1):20-36. PubMed ID: 1094096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of 2-deoxy-D-glucose on the incorporation of glucose into (1----3)-beta-glucan in stationary phase cultures of Candida albicans.
    Gale EF; Wayman F; Orlean PA
    J Gen Microbiol; 1984 Dec; 130(12):3303-11. PubMed ID: 6440951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes.
    Gale EF; Ingram J; Kerridge D; Notario V; Wayman F
    J Gen Microbiol; 1980 Apr; 117(2):383-91. PubMed ID: 6999116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Glucanases from Candida albicans: purification, characterization and the nature of their attachment to cell wall components.
    Notario V
    J Gen Microbiol; 1982 Apr; 128(4):747-59. PubMed ID: 6750038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of aeration and metabolic inhibitors on resistance to amphotericin in starved cultures of Candida albicans.
    Gale EF; Johnson AM; Kerridge D
    J Gen Microbiol; 1977 Mar; 99(1):77-84. PubMed ID: 325178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic resistance to amphotericin B in Candida albicans: the role of reduction.
    Gale EF; Johnson AM; Kerridge D; Miles EA
    J Gen Microbiol; 1978 Dec; 109(2):191-204. PubMed ID: 370341
    [No Abstract]   [Full Text] [Related]  

  • 8. The interaction of amphotericin B methyl ester with protoplasts of Candida albicans.
    Kerridge D; Koh TY; Johnson AM
    J Gen Microbiol; 1976 Sep; 96(1):117-23. PubMed ID: 789813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans.
    Ram SP; Romana LK; Shepherd MG; Sullivan PA
    J Gen Microbiol; 1984 May; 130(5):1227-36. PubMed ID: 6147389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The porosity of the cell wall of Candida albicans.
    Cope JE
    J Gen Microbiol; 1980 Jul; 119(1):253-5. PubMed ID: 6997435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mycolase and amphotericin B on Candida albicans and Candida pseudotropicalis in vitro and in vivo.
    Chalkley LJ; Trinci AP; Pope AM
    Sabouraudia; 1985 Jun; 23(3):147-64. PubMed ID: 3895468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucan-associated protein modulations and ultrastructural changes of the cell wall in Candida albicans treated with micafungin, a water-soluble, lipopeptide antimycotic.
    Angiolella L; Maras B; Stringaro AR; Arancia G; Mondello F; Girolamo A; Palamara AT; Cassone A
    J Chemother; 2005 Aug; 17(4):409-16. PubMed ID: 16167521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance.
    Cassone A; Kerridge D; Gale EF
    J Gen Microbiol; 1979 Feb; 110(2):339-49. PubMed ID: 374681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipopeptide antimycotic, cilofungin modulates the incorporation of glucan-associated proteins into the cell wall of Candida albicans.
    Angiolella L; Simonetti N; Cassone A
    J Antimicrob Chemother; 1994 Jun; 33(6):1137-46. PubMed ID: 7928807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic resistance to miconazole and amphotericin B in Candida albicans.
    Gale EF; Johnson AM; Kerridge D; Wayman F
    J Gen Microbiol; 1980 Apr; 117(2):535-8. PubMed ID: 6999120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and some properties of Candida albicans exo-1,3-beta-glucanase.
    Molina M; Cenamor R; Sanchez M; Nombela C
    J Gen Microbiol; 1989 Feb; 135(Pt 2):309-14. PubMed ID: 2515245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature and development of phenotypic resistance to amphotericin B in Candida albicans.
    Gale EF
    Adv Microb Physiol; 1986; 27():277-320. PubMed ID: 3532717
    [No Abstract]   [Full Text] [Related]  

  • 18. Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae.
    Lai MH; Silverman SJ; Gaughran JP; Kirsch DR
    Yeast; 1997 Mar; 13(3):199-213. PubMed ID: 9090049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activity of cilofungin on the incorporation of glucan associated proteins into hyphal cells of Candida albicans.
    Angiolella L; Facchin M; Simonetti N; Cassone A
    J Chemother; 1995 Apr; 7(2):83-9. PubMed ID: 7666125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans.
    Surarit R; Gopal PK; Shepherd MG
    J Gen Microbiol; 1988 Jun; 134(6):1723-30. PubMed ID: 3065455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.