BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6127057)

  • 1. Inactivation of acetyl-coenzyme A carboxylase and fatty acid synthesis by N2, O2'-dibutyryl guanosine cyclic 3',5'-monophosphate and N6,O2'-dibutyryl adenosine cyclic 3',5'-monophosphate in isolated hepatocytes.
    Ly S; Kim KH
    Arch Biochem Biophys; 1982 Aug; 217(1):251-6. PubMed ID: 6127057
    [No Abstract]   [Full Text] [Related]  

  • 2. A soluble interaction between dibutyryl cyclic guanosine 3':5'-monophosphate and cholecystokinin: a possible mechanism for the inhibition of cholecystokinin activity.
    Miller LJ; Reilly WM; Rosenzweig SA; Jamieson JD; Go VL
    Gastroenterology; 1983 Jun; 84(6):1505-11. PubMed ID: 6301926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of rat liver acetyl coenzyme A carboxylase by N 6 ,O 2' -dibutyryl cyclic adenosine 3':5'-monophosphate in vitro.
    Allred JB; Roehrig KL
    J Biol Chem; 1973 Jun; 248(11):4131-3. PubMed ID: 4145327
    [No Abstract]   [Full Text] [Related]  

  • 4. Differential inhibition and potentiation of chemoattractant-induced superoxide formation in human neutrophils by the cell-permeant analogue of cyclic GMP, N2,2'-O-dibutyryl guanosine 3':5'-cyclic monophosphate.
    Ervens J; Schultz G; Seifert R
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Apr; 343(4):370-6. PubMed ID: 1649410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon and N6,O2'-dibutyryl adenosine 3':5'-monophosphate inhibition of lipogenesis and phosphofructokinase activity of hepatocytes from meal-fed rats.
    Ochs RS; Harris RA
    Lipids; 1980 Jul; 15(7):504-11. PubMed ID: 6251334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dibutyryl cyclic adenosine monophosphate and dibutyryl cyclic guanosine monophosphate on neuron activity of suprachiasmatic nucleus in rat hypothalamic slice preparation.
    Liou SY; Shibata S; Shiratsuchi A; Ueki S
    Neurosci Lett; 1986 Jun; 67(3):339-43. PubMed ID: 3016614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent inactivation of acetyl CoA carboxylase by adenosine triphosphate.
    Desjardins PR; Dakshinamurti K
    Int J Biochem; 1978; 9(4):227-34. PubMed ID: 25798
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate on liver proteoglycan synthesis.
    Gressner AM; Schulz W
    Horm Metab Res; 1981 Nov; 13(11):649-50. PubMed ID: 6273280
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of hepatic lipogenesis by adenine nucleotides.
    Harris RA; Yount RA
    Lipids; 1975 Nov; 10(11):673-80. PubMed ID: 172757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of cholecystokinin receptors in rat pancreatic membranes by sulfhydryl reagents: protection by guanosine 5'-triphosphate (GTP) but not N2,O2-dibutyryl guanosine 3',5'-cyclic monophosphate (dibutyryl cGMP).
    Chang RS; Lotti VJ; Chen TB
    Biochem Pharmacol; 1984 Jul; 33(14):2334-5. PubMed ID: 6087823
    [No Abstract]   [Full Text] [Related]  

  • 11. The phosphorylation of salivary gland chromatin proteins following treatment of rats with dibutyryl cyclic AMP and dibutyryl cyclic GMP.
    Itzhaki S; Capps MJ
    Gen Pharmacol; 1978; 9(5):355-9. PubMed ID: 212348
    [No Abstract]   [Full Text] [Related]  

  • 12. Biochemical aspects of cardiac muscle differentiation. Possible control of deoxyribonucleic acid synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3':5'-monophosphate.
    Claycomb WC
    J Biol Chem; 1976 Oct; 251(19):6082-9. PubMed ID: 184091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid modulation of rat hepatocyte HMG-CoA reductase activity by cyclic AMP or cyclic GMP.
    Henneberg R; Rodwell VW
    Physiol Chem Phys Med NMR; 1985; 17(1):35-40. PubMed ID: 2994125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avidin induction by dibutyryl cyclic guanosine 3',5'-monophosphate in chick oviduct organ culture.
    Niemelä AO; Tuohimaa PJ
    Biochem Biophys Res Commun; 1982 Aug; 107(3):795-802. PubMed ID: 6291518
    [No Abstract]   [Full Text] [Related]  

  • 15. Cyclic AMP and cyclic GMP as the respective mediators of the intracycle stimulation of DNA synthesis and mitosis induced by glucagon and insulin in primary neonatal rat hepatocytes.
    Armato U; Andreis PG; Draghi E
    Life Sci; 1981 Dec; 29(26):2763-9. PubMed ID: 6276634
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of glucagon, cAMP, and cGMP effects on lipogenesis in hepatocytes.
    Hayden LJ; Cohen S; Levin K; Margolis S
    Can J Biochem Cell Biol; 1983 Apr; 61(4):207-13. PubMed ID: 6303534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of sporulation in Bacillus subtilis by cyclic-guanosine-3',5'-monophosphate under condition of catabolite repression.
    Majumdar S; Das SK; Basu S; Bose SK
    Indian J Biochem Biophys; 1985 Aug; 22(4):259-60. PubMed ID: 3009309
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell.
    Watkins PA; Tarlow DM; Lane MD
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1497-501. PubMed ID: 193102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of N6-monobutyryl adenosine 5'-monophosphate. A major hepatic metabolite of N6,O2'-dibutyryl cyclic adenosine 3':5'-monophosphate.
    Dils WL; West TD; Walsh DA
    J Biol Chem; 1977 Jun; 252(12):4287-92. PubMed ID: 193863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamine metabolism in rat brain following the intracerebroventricular administration of cyclic nucleotides.
    Kehr W; Debus G; Thiede HM
    J Neural Transm; 1982; 55(1):1-8. PubMed ID: 6182268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.