These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 6127102)
21. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy. Cruz A; Casals C; Plasencia I; Marsh D; Pérez-Gil J Biochemistry; 1998 Jun; 37(26):9488-96. PubMed ID: 9649332 [TBL] [Abstract][Full Text] [Related]
22. Competition between cholesterol and phosphatidylcholine for the hydrophobic surface of sarcoplasmic reticulum Ca2+-ATPase. Silvius JR; McMillen DA; Saley ND; Jost PC; Griffith OH Biochemistry; 1984 Jan; 23(3):538-47. PubMed ID: 6322842 [TBL] [Abstract][Full Text] [Related]
23. Fourier-transform infrared studies of CaATPase partitioning in phospholipid mixtures of 1,2-dipalmitoylphosphatidylcholine-d62 with 1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-stearoyl-2-oleoylphosphatidylcholine. Jaworsky M; Mendelsohn R Biochemistry; 1985 Jul; 24(14):3422-8. PubMed ID: 2931112 [TBL] [Abstract][Full Text] [Related]
24. A spin-label and hydrogen-deuterium exchange reaction kinetics study of protein-lipid interactions in lipid-replaced Ca2+-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Higashi K; Kirino Y J Biochem; 1983 Dec; 94(6):1769-79. PubMed ID: 6323380 [TBL] [Abstract][Full Text] [Related]
25. A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Gould GW; McWhirter JM; East JM; Lee AG Biochim Biophys Acta; 1987 Nov; 904(1):45-54. PubMed ID: 2959321 [TBL] [Abstract][Full Text] [Related]
26. Fourier transform infrared spectroscopic identification of gel phase domains in reconstituted phospholipid vesicles containing Ca2+-ATPase. Jaworsky M; Mendelsohn R Biochim Biophys Acta; 1986 Sep; 860(3):491-502. PubMed ID: 2943318 [TBL] [Abstract][Full Text] [Related]
27. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition. Dalton KA; East JM; Mall S; Oliver S; Starling AP; Lee AG Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):637-46. PubMed ID: 9445393 [TBL] [Abstract][Full Text] [Related]
28. Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters. Karlovská J; Uhríková D; Kucerka N; Teixeira J; Devínsky F; Lacko I; Balgavý P Biophys Chem; 2006 Jan; 119(1):69-77. PubMed ID: 16223561 [TBL] [Abstract][Full Text] [Related]
29. Binding of dansyl propranolol to the (Ca2+ + Mg2+)-ATPase. Lee AG; East JM; Jones OT; McWhirter J; Rooney EK; Simmonds AC Biochim Biophys Acta; 1983 Jul; 732(2):441-54. PubMed ID: 6135446 [TBL] [Abstract][Full Text] [Related]
30. Interactions of hexachlorocyclohexanes with the (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum. Jones OT; Froud RJ; Lee AG Biochim Biophys Acta; 1985 Feb; 812(3):740-51. PubMed ID: 2578811 [TBL] [Abstract][Full Text] [Related]
31. Separate effects of long-chain phosphatidylcholines on dephosphorylation of the Ca(2+)-ATPase and on Ca2+ binding. Starling AP; East JM; Lee AG Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):785-8. PubMed ID: 8836120 [TBL] [Abstract][Full Text] [Related]
32. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247 [TBL] [Abstract][Full Text] [Related]
33. Effects of phospholipid fatty acyl chain length on phosphorylation and dephosphorylation of the Ca(2+)-ATPase. Starling AP; East JM; Lee AG Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):875-9. PubMed ID: 7575421 [TBL] [Abstract][Full Text] [Related]
34. Reconstitution of rabbit sarcoplasmic reticulum calcium ATPase in a series of phosphatidylcholines containing a saturated and an unsaturated chain: suggestion of an optimal lipid environment. Matthews PL; Bartlett E; Ananthanarayanan VS; Keough KM Biochem Cell Biol; 1993; 71(7-8):381-9. PubMed ID: 8123254 [TBL] [Abstract][Full Text] [Related]
35. Effects of phospholipids on the function of (Ca2(+)-Mg2+)-ATPase. Michelangeli F; Grimes EA; East JM; Lee AG Biochemistry; 1991 Jan; 30(2):342-51. PubMed ID: 1824818 [TBL] [Abstract][Full Text] [Related]
36. Effect of phospholipid substitution on the mobility of spin labels bound to the ATPase of sarcoplasmic reticulum. Nakamura H; Martonosi AN J Biochem; 1981 Jan; 89(1):21-8. PubMed ID: 6260760 [TBL] [Abstract][Full Text] [Related]
37. Electron spin resonance and steady-state fluorescence polarization studies of lipid bilayers containing integral proteins. Pink DA; Chapman D; Laidlaw DJ; Wiedmer T Biochemistry; 1984 Aug; 23(18):4051-8. PubMed ID: 6091736 [TBL] [Abstract][Full Text] [Related]
38. Influence of the calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles. Florine KI; Feigenson GW Biochemistry; 1987 Mar; 26(6):1757-68. PubMed ID: 3036210 [TBL] [Abstract][Full Text] [Related]
39. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Cornea RL; Thomas DD Biochemistry; 1994 Mar; 33(10):2912-20. PubMed ID: 8130205 [TBL] [Abstract][Full Text] [Related]
40. The effect of bilayer thickness on the activity of (Na+ + K+)-ATPase. Johannsson A; Smith GA; Metcalfe JC Biochim Biophys Acta; 1981 Mar; 641(2):416-21. PubMed ID: 6111345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]