These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6127398)

  • 1. In vitro metabolism in the rabbit of desipramine and nortriptyline to yield carboxylic acids.
    Beckett AH; Hutt AJ
    J Pharm Pharmacol; 1982 Sep; 34(9):614. PubMed ID: 6127398
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of amitriptyline, nortriptyline, imipramine and desipramine to yield hydroxylamines.
    Beckett AH; al-Sarraj S
    J Pharm Pharmacol; 1973 Apr; 25(4):335-6. PubMed ID: 4146688
    [No Abstract]   [Full Text] [Related]  

  • 3. Alprazolam does not inhibit the metabolism of nortriptyline in depressed patients or inhibit the metabolism of desipramine in human liver microsomes.
    Bertilsson L; Aberg-Wistedt A; Lidén A; Otani K; Spina E
    Ther Drug Monit; 1988; 10(2):231-3. PubMed ID: 3381243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of drug metabolism in the isolated perfused liver and in vivo in rats.
    von Bahr C; Alexanderson B; Azarnoff DL; Sjoqvist F; Orrenius S
    Eur J Pharmacol; 1970 Jan; 9(1):99-105. PubMed ID: 5434299
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the metabolism and pharamcokinetics of nortriptyline and desmethylimipramine in man.
    Alexanderson B; Bertilsson L; Borgå O; Sjöqvist F
    Chem Biol Interact; 1971 Aug; 3(4):235-6. PubMed ID: 5132987
    [No Abstract]   [Full Text] [Related]  

  • 6. Methylation of desmethylimipramine by rabbit lung in vitro.
    Dingell JV; Sanders E
    Biochem Pharmacol; 1966 May; 15(5):599-605. PubMed ID: 5961437
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction of imipramine, desmethylimipramine, nortriptyline and 1-naphthol with microsomal preparations.
    von Bahr C; Orrenius S; Sjöqvist F
    Chem Biol Interact; 1971 Aug; 3(4):243-4. PubMed ID: 5132990
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of clearance concepts to some literature data on drug metabolism in the isolated perfused liver preparation and in vivo.
    Rowland M
    Eur J Pharmacol; 1972 Mar; 17(3):352-6. PubMed ID: 5022150
    [No Abstract]   [Full Text] [Related]  

  • 9. The pH-dependent excretion of monomethylated tricyclic antidepressants.
    Sjöqvist F; Berglund F; Borgå O; Hammer W; Andersson S; Thorstrand C
    Clin Pharmacol Ther; 1969; 10(6):826-33. PubMed ID: 5349623
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparative study of the metabolism of desmethylimipramine, nortriptyline, and oxyphenylbutazone in man.
    Hammer W; Mårtens S; Sjöqvist F
    Clin Pharmacol Ther; 1969; 10(1):44-9. PubMed ID: 5765184
    [No Abstract]   [Full Text] [Related]  

  • 11. A pharmacokinetic approach to the treatment of depression.
    Sjöqvist F
    Int Pharmacopsychiatry; 1971; 6(3):147-69. PubMed ID: 4950568
    [No Abstract]   [Full Text] [Related]  

  • 12. [Differences between individuals in human pharmacokinetics. Clinical significance].
    Sjöqvist F
    Munch Med Wochenschr; 1972 Sep; 114(38):1600-8. PubMed ID: 4678410
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics of nortiptyline (NT) in rats in vivo and in the isolated perfused liver: demonstration of a 'first pass disappearance' of NT in the liver.
    von Bahr C; Borgå O; Fellenius E; Rowland M
    Pharmacology; 1973; 9(3):177-86. PubMed ID: 4714233
    [No Abstract]   [Full Text] [Related]  

  • 14. The complex binding of tricyclic antidepressants to rat brain: the case of nortriptyline.
    Biegon A
    Brain Res; 1984 Nov; 321(2):347-51. PubMed ID: 6498524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of complexes absorbing at 455 nm from cytochrome P-450 and metabloites of compounds related to SKF 525-A.
    Buening MK; Franklin MR
    Drug Metab Dispos; 1974; 2(4):386-90. PubMed ID: 4153511
    [No Abstract]   [Full Text] [Related]  

  • 16. The inhibitory effect of hydrocortisone and testosterone on the plasma disappearance of nortriptyline in the dog and the perfused rat liver.
    von Bahr C; Sjöqvist F; Orrenius S
    Eur J Pharmacol; 1970 Jan; 9(1):106-10. PubMed ID: 5434284
    [No Abstract]   [Full Text] [Related]  

  • 17. Regioselectivity and substrate concentration-dependency of involvement of the CYP2D subfamily in oxidative metabolism of amitriptyline and nortriptyline in rat liver microsomes.
    Masubuchi Y; Iwasa T; Fujita S; Suzuki T; Horie T; Narimatsu S
    J Pharm Pharmacol; 1996 Sep; 48(9):925-9. PubMed ID: 9036183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C29-carboxylic acid intermediates of cholesterol biosynthesis in rat liver.
    Hornby GM; Boyd GS
    Biochem J; 1971 Mar; 122(1):24P-25P. PubMed ID: 5124797
    [No Abstract]   [Full Text] [Related]  

  • 19. The importance of stable isotope labelled drugs in clinical pharmacology: with illustrations from studies on the disposition of propranolol and nortriptyline in man.
    Gaffney TE; Knapp D; Walle T; Privitera P; Saelens D
    South Med J; 1974 Aug; 67(8):990-1002. PubMed ID: 4854875
    [No Abstract]   [Full Text] [Related]  

  • 20. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.
    Palmer-Brown W; Dunne B; Ortin Y; Fox MA; Sandford G; Murphy CD
    Xenobiotica; 2017 Sep; 47(9):763-770. PubMed ID: 27541932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.