These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6127694)

  • 1. The Leeuwenhoek Lecture, 1981. The biochemical and genetic approach to the study of bioenergetics with the use of Escherichia coli: progress and prospects.
    Gibson F
    Proc R Soc Lond B Biol Sci; 1982 Apr; 215(1198):1-18. PubMed ID: 6127694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and genetic studies on the assembly and function of the F1-F0 adenosine triphosphatase of Escherichia coli.
    Gibson F
    Biochem Soc Trans; 1983 Jun; 11(3):229-40. PubMed ID: 6192020
    [No Abstract]   [Full Text] [Related]  

  • 3. Organization of unc gene cluster of Escherichia coli coding for proton-translocating ATPase of oxidative phosphorylation.
    Kanazawa H; Tamura F; Mabuchi K; Miki T; Futai M
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7005-9. PubMed ID: 6261234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of a functional F0 of the proton-translocating ATPase of Escherichia coli.
    Klionsky DJ; Brusilow WS; Simoni RD
    J Biol Chem; 1983 Aug; 258(16):10136-43. PubMed ID: 6309770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR; Michelsen O
    J Bacteriol; 1992 Dec; 174(23):7635-41. PubMed ID: 1447134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the unc genes in Escherichia coli.
    McCarthy JE
    J Bioenerg Biomembr; 1988 Feb; 20(1):19-39. PubMed ID: 2894371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of ATP as the energy source for maltose transport in Escherichia coli.
    Dean DA; Davidson AL; Nikaido H
    Res Microbiol; 1990; 141(3):348-52. PubMed ID: 2177914
    [No Abstract]   [Full Text] [Related]  

  • 8. The proton-ATPase of bacteria and mitochondria.
    Senior AE; Wise JG
    J Membr Biol; 1983; 73(2):105-24. PubMed ID: 6191035
    [No Abstract]   [Full Text] [Related]  

  • 9. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.
    Kaim G; Dimroth P
    J Mol Biol; 1995 Nov; 253(5):726-38. PubMed ID: 7473747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli.
    Gunsalus RP; Brusilow WS; Simoni RD
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):320-4. PubMed ID: 6281763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations.
    von Meyenburg K; Jørgensen BB; Nielsen J; Hansen FG
    Mol Gen Genet; 1982; 188(2):240-8. PubMed ID: 6185823
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy transduction in chloroplasts: structure and function of the ATPase complex.
    Shavit N
    Annu Rev Biochem; 1980; 49():111-38. PubMed ID: 6447471
    [No Abstract]   [Full Text] [Related]  

  • 13. A fifth gene (uncE) in the operon concerned with oxidative phosphorylation in Escherichia coli.
    Downie JA; Senior AE; Gibson F; Cox GB
    J Bacteriol; 1979 Feb; 137(2):711-8. PubMed ID: 154509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation.
    Schairer HU; Friedl P; Schmid BI; Vogel G
    Eur J Biochem; 1976 Jul; 66(2):257-68. PubMed ID: 133025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial energetics.
    Haddock BA
    Philos Trans R Soc Lond B Biol Sci; 1980 Aug; 290(1040):329-39. PubMed ID: 6106247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical studies of bacterial protein export.
    Tai PC
    Curr Top Microbiol Immunol; 1986; 125():43-58. PubMed ID: 2874957
    [No Abstract]   [Full Text] [Related]  

  • 17. The introduction of Escherichia coli and biochemical genetics to the study of oxidative phosphorylation.
    Gibson F
    Trends Biochem Sci; 2000 Jul; 25(7):342-4. PubMed ID: 10871886
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic complementation between two mutant unc alleles (unc A401 and unc D409) affecting the Fl portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli K12.
    Cox GB; Downie JA; Gibson F; Radik J
    Biochem J; 1978 Mar; 170(3):593-8. PubMed ID: 148275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Nature of membrane ATPase inactivation in an Escherichia coli mutant with genetically impaired ATPase].
    Chetkauskaĭte AV; Planutis DL; Zimkus AZ; Akimenko VK; Grinius LL
    Biokhimiia; 1980 Jul; 45(7):1274-83. PubMed ID: 6452179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The F1 genes of the F1F0 ATP synthase from the acidophilic bacterium Thiobacillus ferrooxidans complement Escherichia coli F1 unc mutants.
    Brown LD; Dennehy ME; Rawlings DE
    FEMS Microbiol Lett; 1994 Sep; 122(1-2):19-25. PubMed ID: 7958772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.