These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 6128112)
1. Amino acid transport and intracellular Na+ and K+ content of chicken erythrocytes genetically selected for high and low leucine transport activity. Lerner J; Smagula RM; Hilchey SE; Somes RG Comp Biochem Physiol A Comp Physiol; 1982; 73(2):243-8. PubMed ID: 6128112 [TBL] [Abstract][Full Text] [Related]
2. Cell membrane amino acid transport processes in the domestic fowl (Gallus domesticus). Lerner J Comp Biochem Physiol A Comp Physiol; 1984; 78(2):205-15. PubMed ID: 6146442 [TBL] [Abstract][Full Text] [Related]
3. Sodium-ion dependence of glycine and lysine transport in chicken erythrocytes genetically selected for high and low leucine transport activity. Lerner J; Smagula RM; Somes RG Comp Biochem Physiol A Comp Physiol; 1984; 78(2):277-8. PubMed ID: 6146447 [TBL] [Abstract][Full Text] [Related]
4. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes. Vargas M; Devés R J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860 [TBL] [Abstract][Full Text] [Related]
5. Changes in glycine and leucine transport during red cell maturation in the rat. Felipe A; Viñas O; Remesar X Biosci Rep; 1990 Apr; 10(2):209-16. PubMed ID: 2357485 [TBL] [Abstract][Full Text] [Related]
6. Selective breeding of chickens for erythrocytes with high and low leucine transport activity. Somes RG; Smagula RM; Lerner J Am J Physiol; 1981 Nov; 241(5):C233-42. PubMed ID: 7304735 [TBL] [Abstract][Full Text] [Related]
7. Developmental changes in amino acid transport in the chicken erythrocyte. Lerner J; Hilchey SE; Smagula RM Comp Biochem Physiol A Comp Physiol; 1983; 74(4):881-4. PubMed ID: 6132735 [TBL] [Abstract][Full Text] [Related]
8. An improved method for measuring intracellular electrolytes in erythrocytes and the effects of cold storage. Weissberg PL; West MJ; Woods KL Clin Chim Acta; 1983 Mar; 129(1):85-9. PubMed ID: 6851154 [No Abstract] [Full Text] [Related]
9. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA; Mason DK; Young JD Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844 [TBL] [Abstract][Full Text] [Related]
10. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. Heyne RI; de Vrij W; Crielaard W; Konings WN J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936 [TBL] [Abstract][Full Text] [Related]
11. Decreased water and potassium content in erythrocytes in essential hypertension. Kawarabayashi T; Kanayama Y; Takeuchi K; Oku H; Kohno M; Yoshimura T; Yasunari K; Takeda T; Kageyama K; Kinoshita Y Hypertension; 1986 Jul; 8(7):618-24. PubMed ID: 3721562 [TBL] [Abstract][Full Text] [Related]
12. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. Devés R; Angelo S; Chávez P J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535 [TBL] [Abstract][Full Text] [Related]
13. Glycine transport in mouse eggs and preimplantation conceptuses. Van Winkle LJ; Haghighat N; Campione AL; Gorman JM Biochim Biophys Acta; 1988 Jun; 941(2):241-56. PubMed ID: 2454661 [TBL] [Abstract][Full Text] [Related]
14. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. Duhm J J Membr Biol; 1987; 98(1):15-32. PubMed ID: 3669063 [TBL] [Abstract][Full Text] [Related]
15. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell. Rosenberg R Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995 [TBL] [Abstract][Full Text] [Related]
16. Uptake of leucine and lysine in chicken red blood cells of varying density. Lerner J; Hilchey SE; Smagula RM Comp Biochem Physiol A Comp Physiol; 1982; 73(1):77-80. PubMed ID: 6127186 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ; Campione AL; Gorman JM Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171 [TBL] [Abstract][Full Text] [Related]
18. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells. Young JD; Wolowyk MW; Jones SM; Ellory JC Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202 [TBL] [Abstract][Full Text] [Related]
19. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti). Young JD; Fincham DA; Harvey CM Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517 [TBL] [Abstract][Full Text] [Related]
20. Glycine transport in human erythrocytes. Ellory JC; Jones SE; Young JD J Physiol; 1981 Nov; 320():403-22. PubMed ID: 7320944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]