These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6128112)

  • 21. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity.
    Devés R; Chavez P; Boyd CA
    J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A kinetic study of cation transport in erythrocytes from uremic patients.
    Corry DB; Lee DB; Tuck ML
    Kidney Int; 1987 Aug; 32(2):256-60. PubMed ID: 2443751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of a chronic high salt intake on blood pressure and the kinetics of sodium and potassium transport in erythrocytes of young and adult subtotally nephrectomized Sprague-Dawley rats.
    Zicha J; Kronauer J; Duhm J
    J Hypertens; 1990 Mar; 8(3):207-17. PubMed ID: 2159501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid transport by resealed ghosts from pigeon erythrocytes.
    Wheeler KP
    Biochem J; 1982 Mar; 202(3):613-21. PubMed ID: 7092835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of leucine, lysine, aspartic acid, and glycine into isolated neurons and astrocytes.
    Hannuniemi R; Oja SS
    Neurochem Res; 1981 Aug; 6(8):873-84. PubMed ID: 6796899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing the hypothesis that system y(+)L accounts for high- and low-transport phenotypes in chicken erythrocytes using L-leucine as substrate.
    Angelo S; Cabrera S; Rojas AM; Rodríguez N; Devés R
    J Membr Biol; 2005 Mar; 204(2):93-100. PubMed ID: 16151705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of human red cell sodium and potassium transport by divalent cations.
    Ellory JC; Flatman PW; Stewart GW
    J Physiol; 1983 Jul; 340():1-17. PubMed ID: 6887042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid transport in human and in sheep erythrocytes.
    Young JD; Jones SE; Ellory JC
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relation of amino acid transport to sodium-ion concentration.
    Wheeler KP; Inui Y; Hollenberg PF; Eavenson E; Christensen HN
    Biochim Biophys Acta; 1965 Nov; 109(2):620-2. PubMed ID: 5867563
    [No Abstract]   [Full Text] [Related]  

  • 32. The distribution of amino acids, Na+ and K+ from surface to centre in incubated slices of mouse brain.
    Sershen H; Lajtha A
    J Neurochem; 1974 Jun; 22(6):977-85. PubMed ID: 4854730
    [No Abstract]   [Full Text] [Related]  

  • 33. Kinetics of bumetanide-sensitive Na+-K+ co-transport in erythrocytes of essential hypertensive patients.
    Delva P; De Gasperi M; Degan M; Covi G; Lechi A
    Clin Sci (Lond); 1985 Nov; 69(5):607-11. PubMed ID: 4053514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of active sodium and potassium transport in hyponatremic states in infancy and childhood.
    Sigström L
    Acta Paediatr Scand; 1981; 70(3):353-9. PubMed ID: 6454326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-dependent changes in cation transport in the chicken erythrocyte.
    Drew C; Lapaix F; Egee S; Thomas S; Ellory JC; Staines HM
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Sep; 133(1):169-78. PubMed ID: 12160883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sepsis correlated with increased erythrocyte Na+ content and Na+ - K+ pump activity.
    Hsieh CC; Hwang TL; Chen HM; Chen MF; Sun YF; Lau YT
    J Biomed Sci; 2003; 10(4):389-95. PubMed ID: 12824698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations.
    Yamasaki M; Takada A; Yamato O; Maede Y
    J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis.
    Eddy AA; Nowacki JA
    Biochem J; 1971 May; 122(5):701-11. PubMed ID: 5129266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.