These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6128174)

  • 1. Caudate neuronal response to microiontophoretically injected morphine in naive and morphine-dependent rats.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Comp Biochem Physiol C Comp Pharmacol; 1982; 73(1):205-9. PubMed ID: 6128174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microiontophoretically applied morphine and naloxone on single cell activity in the parafasciculus nucleus of naive and morphine-dependent rats.
    Reyes-Vazquez C; Dafny N
    J Pharmacol Exp Ther; 1984 May; 229(2):583-8. PubMed ID: 6325669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons.
    Saiepour MH; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unit activity recorded simultaneously from medial thalamus and caudate nucleus in naive and morphine-dependent rats.
    Dafny N; Brown M; Burks TF; Rigor BM
    Exp Neurol; 1979 Apr; 64(1):216-24. PubMed ID: 570933
    [No Abstract]   [Full Text] [Related]  

  • 5. Electrophysiological support in favor of multiple opiate receptors in the caudate and the central gray of the rat.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Comp Biochem Physiol C Comp Pharmacol; 1982; 73(2):323-30. PubMed ID: 6129100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response characteristics of thalamic neurons to microiontophoretically applied morphine.
    Reyes-Vazquez C; Dafny N
    Neuropharmacology; 1982 Aug; 21(8):733-8. PubMed ID: 7121745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periaqueductal gray neurons response to microiontophoretically injected morphine in naive and morphine-dependent rats.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Brain Res Bull; 1981 Jun; 6(6):473-8. PubMed ID: 6265040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurophysiological evidence for tolerance and dependence on opiates: simultaneous multiunit recordings from septum, thalamus, and caudate nucleus.
    Dafny N
    J Neurosci Res; 1980; 5(4):339-49. PubMed ID: 7191906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does naloxone have functional significant activity on medial thalamic neurons? Microiontophoretical study.
    Reyes-Vázquez C; Dafny N
    Life Sci; 1983 Mar; 32(13):1443-8. PubMed ID: 6834997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphine tolerance and dependence: sensitivity of caudate nucleus neurons.
    Dafny N; Brown M; Burks TF; Rigor BM
    Brain Res; 1979 Feb; 162(2):363-8. PubMed ID: 216470
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of systemically administered morphine on spontaneous activity of globus pallidus and caudate nucleus neurons in the rat.
    Napier TC; Pirch JH
    Prog Clin Biol Res; 1981; 68():191-6. PubMed ID: 7301881
    [No Abstract]   [Full Text] [Related]  

  • 12. Single neurone studies of opioid tolerance and dependence at the ventrobasal thalamic level in an experimental model of clinical pain, the arthritic rat.
    Kayser V; Attal N; Chen YL; Guilbaud G
    Brain Res; 1991 Jul; 554(1-2):130-8. PubMed ID: 1933295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microiontophoretic application of morphine and naloxone to neurons in hypothalamus of rat.
    Prieto-Gomez B; Reyes-Vazquez C; Dafny N
    Neuropharmacology; 1984 Sep; 23(9):1081-9. PubMed ID: 6151142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of morphine on: spontaneous, dorsal raphe, spinal tract of trigeminal nucleus, medial lemniscus and reticular lateral magnocellular evoked responses of hypothalamic units, in naive and morphine physically dependent rats.
    Prieto-Gomez B; Dafny N
    Int J Neurosci; 1984 Apr; 23(2):131-45. PubMed ID: 6541213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A demonstration of naloxone-precipitated opiate withdrawal on single neurones in the morphine-tolerant/dependent rat brain.
    Fry JP; Herz A; Zieglgänsberger W
    Br J Pharmacol; 1980 Mar; 68(3):585-92. PubMed ID: 6132637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine withdrawal increases intrinsic excitability of oxytocin neurons in morphine-dependent rats.
    Brown CH; Stern JE; Jackson KL; Bull PM; Leng G; Russell JA
    Eur J Neurosci; 2005 Jan; 21(2):501-12. PubMed ID: 15673449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of afferent inputs to supraoptic nucleus oxytocin neurons during naloxone-precipitated morphine withdrawal in the rat.
    Murphy NP; Onaka T; Brown CH; Leng G
    Neuroscience; 1997 Sep; 80(2):567-77. PubMed ID: 9284358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment.
    Noble F; Cox BM
    Br J Pharmacol; 1996 Jan; 117(1):161-9. PubMed ID: 8825358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intracerebral morphine and enkephalins on the caudate-EEG spindle burst.
    Kamata K; Kameyama T
    Arch Int Pharmacodyn Ther; 1985 May; 275(1):68-77. PubMed ID: 4026463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of nitric oxide in morphine dependence and withdrawal excitation of rat oxytocin neurons.
    Bull PM; Ludwig M; Blackburn-Munro GJ; Delgado-Cohen H; Brown CH; Russell JA
    Eur J Neurosci; 2003 Nov; 18(9):2545-51. PubMed ID: 14622155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.