These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6128191)

  • 1. Comparison of the metabolism of nitrobenzene by hepatic microsomes and cecal microflora from Fischer-344 rats in vitro and the relative importance of each in vivo.
    Levin AA; Dent JG
    Drug Metab Dispos; 1982; 10(5):450-4. PubMed ID: 6128191
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of 2,4-dinitrotoluene by rat hepatic microsomes and cecal flora.
    Dent JG; Schnell SR; Guest D
    Adv Exp Med Biol; 1981; 136 Pt A():431-6. PubMed ID: 7344473
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of dichloroacetic acid by rat and mouse gut microflora, an in vitro study.
    Moghaddam AP; Abbas R; Fisher JW; Stavrou S; Lipscomb JC
    Biochem Biophys Res Commun; 1996 Nov; 228(2):639-45. PubMed ID: 8920962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic reduction of an epoxysuccinic acid derivative by rat cecal microflora.
    Fukushima K; Arai M; Suwa T; Satoh T
    Drug Metab Dispos; 1990; 18(2):264-6. PubMed ID: 1971584
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of dietary pectin on intestinal microfloral metabolism and toxicity of nitrobenzene.
    Goldstein RS; Chism JP; Sherrill JM; Hamm TE
    Toxicol Appl Pharmacol; 1984 Sep; 75(3):547-53. PubMed ID: 6089377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of gut flora in the genotoxicity of dinitrotoluene.
    Mirsalis JC; Hamm TE; Sherrill JM; Butterworth BE
    Nature; 1982 Jan; 295(5847):322-3. PubMed ID: 7057895
    [No Abstract]   [Full Text] [Related]  

  • 7. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and excretion of 2,6-dinitro [14C]toluene in vivo and in isolated perfused rat livers.
    Long RM; Rickert DE
    Drug Metab Dispos; 1982; 10(5):455-8. PubMed ID: 6128192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry.
    Rüfer CE; Glatt H; Kulling SE
    Drug Metab Dispos; 2006 Jan; 34(1):51-60. PubMed ID: 16199471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and DNA binding of 2,6-dinitrotoluene in Fischer-344 rats and A/J mice.
    Dixit R; Schut HA; Klaunig JE; Stoner GD
    Toxicol Appl Pharmacol; 1986 Jan; 82(1):53-61. PubMed ID: 3945944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro.
    Zhu W; Dang Z; Qiu J; Liu Y; Lv C; Diao J; Zhou Z
    Xenobiotica; 2009 Sep; 39(9):649-55. PubMed ID: 19552529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora.
    Walker R; Ryan AJ
    Xenobiotica; 1971; 1(4):483-6. PubMed ID: 5006111
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation.
    Keppler K; Hein EM; Humpf HU
    Mol Nutr Food Res; 2006 Aug; 50(8):686-95. PubMed ID: 16835870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of olaquindox in rat liver microsomes: structural elucidation of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry.
    Liu Z; Huang L; Dai M; Chen D; Wang Y; Tao Y; Yuan Z
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1009-16. PubMed ID: 18320546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of host and intestinal microflora in the metabolism of L-dopa by the rat.
    Goldin BR; Peppercorn MA; Goldman P
    J Pharmacol Exp Ther; 1973 Jul; 186(1):160-6. PubMed ID: 4723308
    [No Abstract]   [Full Text] [Related]  

  • 16. The biosynthesis of ethyl esters of lithocholic acid and isolithocholic acid by rat intestinal microflora.
    Kelsey MI; Sexton SA
    J Steroid Biochem; 1976 Sep; 7(9):641-7. PubMed ID: 979264
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the metabolism of the plant lignans secoisolariciresinol and matairesinol.
    Niemeyer HB; Honig DM; Kulling SE; Metzler M
    J Agric Food Chem; 2003 Oct; 51(21):6317-25. PubMed ID: 14518962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinic acid aromatization in the rat. Urinary hippuric acid and catechol excretion following the singular or repeated administration of quinic acid.
    Indahl SR; Scheline RR
    Xenobiotica; 1973 Aug; 3(8):549-56. PubMed ID: 4764650
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide in rats: evidence for bioactivation through alcohol-O-glucuronidation and O-sulfation.
    Cui D; Rankin GO; Harvison PJ
    Chem Res Toxicol; 2005 Jun; 18(6):991-1003. PubMed ID: 15962934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro metabolism of the HIV-1 protease inhibitor ABT-378: species comparison and metabolite identification.
    Kumar GN; Jayanti V; Lee RD; Whittern DN; Uchic J; Thomas S; Johnson P; Grabowski B; Sham H; Betebenner D; Kempf DJ; Denissen JF
    Drug Metab Dispos; 1999 Jan; 27(1):86-91. PubMed ID: 9884314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.