These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6129001)

  • 41. Kinetics of glutamate efflux in rat liver mitochondria.
    Hoek JB; Coll KE; Williamson JR
    J Biol Chem; 1983 Jan; 258(1):54-8. PubMed ID: 6129254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of the rate of citrulline synthesis by short-term changes in N-acetylglutamate levels in isolated rat-liver mitochondria.
    Meijer AJ; van Woerkom GM
    FEBS Lett; 1978 Feb; 86(1):117-21. PubMed ID: 202504
    [No Abstract]   [Full Text] [Related]  

  • 43. Role of ornithine in urea synthesis in rats treated with thyroid hormone.
    Hayase K; Yoshida A
    Biosci Biotechnol Biochem; 1995 May; 59(5):801-4. PubMed ID: 7787295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The stimulatory effect of alloxan diabetes on citrulline formation in rabbit liver mitochondria.
    Bryła J; Garstka M
    Biochim Biophys Acta; 1985 Mar; 839(1):90-5. PubMed ID: 3978123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of lactate transport into rat liver in vivo.
    Lupo MA; Cefalu WT; Pardridge WM
    Metabolism; 1990 Apr; 39(4):374-7. PubMed ID: 2182972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ornithine uptake by isolated hepatocytes and distribution within the cell.
    Zollner H
    Int J Biochem; 1984; 16(6):681-5. PubMed ID: 6432597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of hexose 6-phosphates from lactate + pyruvate + glutamate by a cell-free system from rat liver.
    Stoecklin FB; Mörikofer-Zwez S; Walter P
    Biochem J; 1986 May; 236(1):61-70. PubMed ID: 2878656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of glucagon in vivo on the N-acetylglutamate, glutamate and glutamine contents of rat liver.
    Staddon JM; Bradford NM; McGivan JD
    Biochem J; 1984 Feb; 217(3):855-7. PubMed ID: 6143551
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impairment of citrulline synthesis during late pregnancy and lactation in rats.
    Rabier D; Briand P; Petit F; Kamoun P; Cathelineau L
    Biochim Biophys Acta; 1985 Jan; 838(1):1-5. PubMed ID: 3967043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of urea synthesis in rat liver. Increase in the concentrations of ornithine and acetylglutamate in rat liver in response to urea synthesis stimulated by the injection of an ammonium salt.
    Saheki T; Ohkubo T; Katsunuma T
    J Biochem; 1978 Dec; 84(6):1423-30. PubMed ID: 738994
    [No Abstract]   [Full Text] [Related]  

  • 51. N-Acetylglutamate in rat liver during foetal development.
    Van Dijk M; Lund P
    Biochem J; 1984 Sep; 222(3):837-8. PubMed ID: 6487275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation.
    Lipsky NG; Pedersen PL
    J Biol Chem; 1981 Aug; 256(16):8652-7. PubMed ID: 7263675
    [No Abstract]   [Full Text] [Related]  

  • 53. Glutamate transprot in rat kidney mitochondria.
    Schoolwerth AC; LaNoue KF; Hoover WJ
    J Biol Chem; 1983 Feb; 258(3):1735-9. PubMed ID: 6130095
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Labelling of liver glutamate by [1-14C]- and [2-14C]-pyruvate as a measure of oxaloacetate-fumarate disequilibrium in the mitochondria.
    Heath DF
    Biochem J; 1985 May; 227(3):866-7. PubMed ID: 2860898
    [No Abstract]   [Full Text] [Related]  

  • 55. Modulation of the activity of rat liver acetylglutamate synthase by pH and arginine concentration.
    Kamemoto ES; Atkinson DE
    Arch Biochem Biophys; 1985 Nov; 243(1):100-7. PubMed ID: 4062297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.
    Coude FX; Sweetman L; Nyhan WL
    J Clin Invest; 1979 Dec; 64(6):1544-51. PubMed ID: 500823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Odd-carbon fatty acid metabolism in hepatocytes from starved rats.
    Sugden MC; West PS; Warner JP; Palmer TN
    Biochem Int; 1984 Jan; 8(1):61-7. PubMed ID: 6477599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport of pyridoxine and pyridoxal 5'-phosphate in isolated rat liver mitochondria.
    Lui A; Lumeng L; Li TK
    J Biol Chem; 1982 Dec; 257(24):14903-6. PubMed ID: 7174673
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial and peroxisomal oxidation of arachidonic and eicosapentaenoic acid studied in isolated liver cells.
    Christensen E; Hagve TA; Christophersen BO
    Biochim Biophys Acta; 1986 Dec; 879(3):313-21. PubMed ID: 3022820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of hyperthyroidism on stimulation of [1-14C]oleate oxidation to 14CO2 in isolated hepatocytes from fed rats by the catecholamines, vasopressin, and angiotensin II.
    Sugden MC; El-Saadi A; Goode AW; Orr JS
    Biosci Rep; 1983 Aug; 3(8):757-65. PubMed ID: 6414548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.