These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6129252)

  • 1. Identification of the histidine residue in D-amino acid oxidase that is covalently modified during inactivation by 5-dimethylaminonaphthalene-1-sulfonyl chloride.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1983 Jan; 258(1):497-502. PubMed ID: 6129252
    [No Abstract]   [Full Text] [Related]  

  • 2. Methylation of the active center histidine 217 in D-amino acid oxidase by methyl-p-nitrobenzenesulfonate.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1984 May; 259(9):5585-90. PubMed ID: 6143757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modifications of D-amino acid oxidase. Evidence for active site histidine, tyrosine, and arginine residues.
    Nishino T; Massey V; Williams CH
    J Biol Chem; 1980 Apr; 255(8):3610-6. PubMed ID: 6102567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of D-amino acid oxidase. Amino acid sequence of the tryptic peptides containing tyrosine and lysine residues modified by fluorodinitrobenzene.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1982 Feb; 257(4):1937-44. PubMed ID: 6120171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The primary structure of D-amino acid oxidase from pig kidney. I. Isolation and sequence of the tryptic peptides.
    Swenson RP; Williams CH; Massey V; Ronchi S; Minchiotti L; Galliano M; Curti B
    J Biol Chem; 1982 Aug; 257(15):8817-23. PubMed ID: 6124542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of methionine-110 as the residue covalently modified in the electrophilic inactivation of D-amino-acid oxidase by O-(2,4-dinitrophenyl) hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1987 Mar; 26(6):1717-22. PubMed ID: 2885027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of porcine malate dehydrogenase. II. Amino acid sequence of a peptide containing the active center histidine residue.
    Foster M; Harrison JH
    Biochim Biophys Acta; 1974 Jun; 351(2):295-300. PubMed ID: 4366371
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and function of D-amino acid oxidase. II. Terminal structure and amino acid composition of hog kidney D-amino acid oxidase.
    Kotaki A; Harada M; Yagi K
    J Biochem; 1967 May; 61(5):598-605. PubMed ID: 4383485
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of synthetic N-5-dimethylaminonaphthalene-1-sulfonyl-apolipoprotein C-II peptides with lipoprotein lipase.
    Voyta JC; Vainio P; Kinnunen PK; Gotto AM; Sparrow JT; Smith LC
    J Biol Chem; 1983 Mar; 258(5):2934-9. PubMed ID: 6826547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A D-amino acid oxidase from Chlorella vulgaris.
    Pistorius EK; Voss H
    Biochim Biophys Acta; 1977 Apr; 481(2):395-406. PubMed ID: 15607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acid sequence of a hitherto unobserved segment from porcine pepsinogen preceeding the N-terminus of pepsin.
    Pedersen VB; Foltmann B
    FEBS Lett; 1973 Sep; 35(2):255-6. PubMed ID: 4582941
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
    Stocker A; Hecht HJ; Bückmann AF
    Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization and partial sequencing of cystine and thiol peptides of pig heart lipoamide dehydrogenase.
    Matthews RG; Arscott LD; Williams CH
    Biochim Biophys Acta; 1974 Nov; 370(1):26-38. PubMed ID: 4609485
    [No Abstract]   [Full Text] [Related]  

  • 14. Amino acid sequence of tuberculin-active protein from Mycobacterium tuberculosis.
    Kuwabara S
    J Biol Chem; 1975 Apr; 250(7):2563-8. PubMed ID: 804477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The amino-acid sequence of sarcine adenylate kinase from skeletal muscle.
    Heil A; Müller G; Noda L; Pinder T; Schirmer H; Schirmer I; von Zabern I
    Eur J Biochem; 1974 Mar; 43(1):131-44. PubMed ID: 4366177
    [No Abstract]   [Full Text] [Related]  

  • 16. [Composition of swine kidney D-aminoacid oxidase and preparation of the peptide containing the active site].
    Mizon J; Biserte G; Boulanger P
    Bull Soc Chim Biol (Paris); 1969 Jun; 51(2):419-23. PubMed ID: 4389737
    [No Abstract]   [Full Text] [Related]  

  • 17. The primary structure of porcine colipase II. I. The amino acid sequence.
    Charles M; Erlanson C; Bianchetta J; Joffre J; Guidoni A; Rovery M
    Biochim Biophys Acta; 1974 Jul; 359(1):186-97. PubMed ID: 4858821
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of the catalytic histidine residue participating in the charge-relay system of carboxypeptidase Y.
    Jung G; Ueno H; Hayashi R; Liao TH
    Protein Sci; 1995 Nov; 4(11):2433-5. PubMed ID: 8563642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NADP+-binding site of ferredoxin-NADP+ reductase. Sequence of the peptide containing the essential lysine residue.
    Cidaria D; Biondi PA; Zanetti G; Ronchi S
    Eur J Biochem; 1985 Jan; 146(2):295-9. PubMed ID: 3917922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in reactivity of mitochondria with 1-dimethylaminonaphthalene-5-sulfonyl chloride (dansyl chloride) transforming from deenergized to energized state.
    Okada M; Hirose S; Tamaura Y; Yamazaki S; Ushiwata A
    Arch Biochem Biophys; 1974 May; 162(1):316-9. PubMed ID: 4831336
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.