These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 6129716)

  • 1. Esterification of the carboxyl groups in fibrinogen by the application of a highly specific methylating agent.
    Osbahr AJ
    Thromb Haemost; 1982 Oct; 48(2):226-31. PubMed ID: 6129716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymerization of fibrinogen under the influence of diazomethane modification.
    Osbahr AJ
    Biomaterials; 1980 Apr; 1(2):100-2. PubMed ID: 7470554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic isolation and identification of methylated derivatives obtained from modified fibrinogen.
    Osbahr AJ
    Biomaterials; 1980 Oct; 1(4):183-8. PubMed ID: 7470571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of beta- and gamma-fluorenylmethyl esters of respectively N alpha-Boc-L-aspartic acid and N alpha-Boc-L-glutamic acid.
    al-Obeidi F; Sanderson DG; Hruby VJ
    Int J Pept Protein Res; 1990 Mar; 35(3):215-8. PubMed ID: 1972376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.
    Atik AE; Guray MZ; Yalcin T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():75-83. PubMed ID: 28063777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of carboxyl groups of fibrinogen and its effect on the binding of cationic detergent.
    Kurioka S; Inoue F; Matsuda M
    J Biochem; 1975 Nov; 78(5):929-34. PubMed ID: 2590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and enzymic activity of ribonuclease-A esterified at glutamic acid-49 and aspartic acid-53.
    Acharya AS; Manjula BN; Vithayathil PJ
    Biochem J; 1978 Sep; 173(3):821-30. PubMed ID: 708373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of carboxyl groups in bovine carboxypeptidase A. II. Chemical identification of a functional glutamic acid residue and other reactive groups.
    Pétra PH; Neurath H
    Biochemistry; 1971 Aug; 10(17):3171-7. PubMed ID: 5165842
    [No Abstract]   [Full Text] [Related]  

  • 9. Determination of the carboxyl content in humic substances by methylation.
    Arsenie I; Boren H; Allard B
    Sci Total Environ; 1992 May; 116(3):213-20. PubMed ID: 1535453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl esterification assisted MALDI FTMS characterization of the orcokinin neuropeptide family.
    Ma M; Kutz-Naber KK; Li L
    Anal Chem; 2007 Jan; 79(2):673-81. PubMed ID: 17222036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of thrombin on modified fibrinogen.
    Osbahr AJ
    Thromb Haemost; 1983 Jun; 49(3):208-13. PubMed ID: 6410533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the reactivity of carboxyl groups of ribonuclease-A in anhydrous methanol.
    Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1975; 7(3):207-19. PubMed ID: 1158559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The number of catalytically essential carboxyl groups in pepsin. Modification of the enzyme by trimethyloxonium fluoroborate.
    Paterson AK; Knowles JR
    Eur J Biochem; 1972 Dec; 31(3):510-7. PubMed ID: 4569455
    [No Abstract]   [Full Text] [Related]  

  • 14. Selected functionality changes of beta-lactoglobulin upon esterification of side-chain carboxyl groups.
    Halpin MI; Richardson T
    J Dairy Sci; 1985 Dec; 68(12):3189-98. PubMed ID: 4093520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of fibrin polymerization with monoclonal antibodies.
    Lugovskoi EV; Makogonenko EM; Chudnovets VS; Derzskaya SG; Gogolinskaya GK; Kolesnikova IN; Bukhanevich AM; Sitak IN; Lyashko ED; Komissarenko SV
    Biomed Sci; 1991; 2(3):249-56. PubMed ID: 1751757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electron microscopical studies on the form and macromolecular construction of fibrinogen molecules and fibrin fibers].
    Köppel G
    Z Zellforsch Mikrosk Anat; 1967; 77(4):443-517. PubMed ID: 5596651
    [No Abstract]   [Full Text] [Related]  

  • 17. Labile protein-methyl ester: comparison between chemically and enzymatically synthesized.
    Kim S; Paik WK
    Experientia; 1976 Aug; 32(8):982-4. PubMed ID: 955034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human fibrinogen heterogeneities. II. Cross-linking capacity of high solubility catabolic intermediates.
    Finlayson JS; Mosesson MW; Bronzert TJ; Pisano JJ
    J Biol Chem; 1972 Aug; 247(16):5220-2. PubMed ID: 5057463
    [No Abstract]   [Full Text] [Related]  

  • 19. Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions.
    Lowenson J; Clarke S
    Blood Cells; 1988; 14(1):103-18. PubMed ID: 3052632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of esterification of carboxyl groups of ribonuclease-A on its structure and immunological activity.
    Acharya AS; Manjula BN; Murthy GS; Vithayathil PJ
    Int J Pept Protein Res; 1977; 9(3):213-9. PubMed ID: 844939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.