These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6129892)

  • 1. Glutamine synthetase from ovine brain is a manganese(II) enzyme.
    Wedler FC; Denman RB; Roby WG
    Biochemistry; 1982 Dec; 21(25):6389-96. PubMed ID: 6129892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association-dissociation of mammalian brain glutamine synthetase: effects of metal ions and other ligands.
    Denman RB; Wedler FC
    Arch Biochem Biophys; 1984 Aug; 232(2):427-40. PubMed ID: 6147118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic, ESR, and trapping evidence for in vivo binding of Mn(II) to glutamine synthetase in brain cells.
    Wedler FC; Ley BW
    Neurochem Res; 1994 Feb; 19(2):139-44. PubMed ID: 7910378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg2+ is bound to glutamine synthetase extracted from bovine or ovine brain in the presence of L-methionine-S-sulfoximine phosphate.
    Maurizi MR; Pinkofsky HB; McFarland PJ; Ginsburg A
    Arch Biochem Biophys; 1986 Apr; 246(1):494-500. PubMed ID: 2870682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mn-Mn interaction in adenylylated and unadenylylated glutamine synthetase.
    Gibbs EJ; Ransom SC; Cuppett S; Villafranca JJ
    Biochem Biophys Res Commun; 1984 May; 120(3):939-45. PubMed ID: 6145412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP, chloride ion, and metal ion binding to bovine brain glutamine synthetase.
    Maurizi MR; Pinkofsky HB; Ginsburg A
    Biochemistry; 1987 Aug; 26(16):5023-31. PubMed ID: 2889467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme.
    Dahlquist FW; Purich DL
    Biochemistry; 1975 May; 14(9):1980-9. PubMed ID: 235974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG; Riordan JF
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.
    Knight TJ; Langston-Unkefer PJ
    J Biol Chem; 1988 Aug; 263(23):11084-9. PubMed ID: 2900240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostatics.
    Ananyev GM; Dismukes GC
    Biochemistry; 1996 Nov; 35(46):14608-17. PubMed ID: 8931559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of manganese ions to the Na+/K+-ATPase during phosphorylation by ATP.
    Campos M; Beaugé L
    Biochim Biophys Acta; 1988 Oct; 944(2):242-8. PubMed ID: 2846058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron paramagnetic resonance studies of the coordination schemes and site selectivities for divalent metal ions in complexes with pyruvate kinase.
    Buchbinder JL; Reed GH
    Biochemistry; 1990 Feb; 29(7):1799-806. PubMed ID: 2158815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Feb; 30(5):1413-8. PubMed ID: 1671336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain.
    Wedler FC; Denman RB
    Curr Top Cell Regul; 1984; 24():153-69. PubMed ID: 6149889
    [No Abstract]   [Full Text] [Related]  

  • 20. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli.
    Koren R; Mildvan S
    Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.